Tag Archives: gearbox truck

China high quality Mixer Truck Gearbox Pmb6.5r120 with Water Outlet for 10m3 Mixer compound planetary gearbox

Product Description

mixer truck gearbox pmb6.5r120 with water outlet for 10M3 mixer

Elephant fluid power is specializing in the production and exporting of engineering construction hydraulic equipment components, hydraulic pumps, hydraulic motors, reducer gearbox, coolers, etc. We are committed to creating the highest-end quality and after-sales service. Very competitive price and high-end quality have won us more and more partners. Looking CZPT to you joining us and establishing good long-term cooperation and benefits.

Concrete Mixer Truck PMP Hydraulic Gearbox
Model available as below

PMB 6 SP……PMB 6 CP….PMB 6.5 SP…….PMB 6.5 CP

PMB 7.1 SP…..PMB 7.1 CP…PMB 7.2 SP……PMB7.2 CP……PMB 7.8 SP…..PMB 7.8 CP..

PMB 8 SP……..PMB 8 CP…..PMB7R..PMB7.1 R…..PMB 7.8 R…..

with water pump connection or without water pump connection

The PMB6 is used on concrete mixers with capacity from 6 m’to 8 m3
The PMB7 is used on concrete mixers with capacity from 8 m’ to 12 m’
The PMB8 is used on concrete mixers with capacity from 12 m’ to 16 m’

 

For Concrete pump and Mixer truck,we supply below types
 

Concrete Mixer parts
Hydraulic Motor
Hydraulic Pump
Eaton seires,
90R series,
Rexroth A4VTG71, A4VTG90, A2FM80, A2FM63,
Sauer PV21, PV22, PV23 … PV27series;MF22,MF23
PMP 90/110 pump, PMP 90/110 Motor
gear box P3301,P4300,P5300,P7300,
PMB6.0, PMB6.1 PMB6.5,PMB7.1,PMP7.5,
PLM7,PLM9,CLM10
575L,577L,580L
TMG51.2,TMG61.2,TMG71.2
Orbit Motor OMH 500, OMH750, BRH470, BMP160…
Hydraulic Pump A10VSO, A6VM, A11VLO, A4VG, A2FO, A7VO, A2FM, A4VO…

 

Elephant Fluid specializes in the manufacture, assembly, export, sales and service of various hydraulic pumps, hydraulic motors and hydraulic accessories. ZheJiang Xihu (West Lake) Dis.CZPT Machinery Equipment Technology Co., Ltd., as the primary agent of CZPT Fluid Power, has the same business scope as CZPT Fluid Power. CZPT Fluid Power Technical team has many years of operation and service experience, Provide customers with professional hydraulic system solutions, Quality assurance of quality products. We have many years in hydraulic system products, 1-7 days, fixed sales engineer , agreement specific delivery period , Years of industry experience, sales, repairs, commissioning, maintenance, Super fast one-stop professional service, Provide a technical response within 2 hours of the standard warranty, Effectively guarantee the quality of hydraulic products, Worry-free delivery time 1300 kinds in stock , One-stop service, directly with the manufacturer, Provide complete hydraulic system solutions, Comprehensive guidance to provide technical services within 1 working day, Rigorous processing and excellent quality. We have over 20 years experience, so we could gather the best resources to our customers. And we have the best professional pre-sales and after-sales system in China. Most importantly, we can provide the products at competitive price with quality guaranteed and fast delivery. We believe the science and technology always change the world. In the future, CZPT fluid power will strive to build an international first-class brand of enterprise, create contributions to society, create value for customers, and bring happiness to the employees.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Gear Shape: Cylindrical Gear
Step: Three-Step
Type: Planetary Gear Reducer

planetarygearbox

A Brief Overview of the Spur Gear and the Helical Planetary Gearbox

This article will provide a brief overview of the Spur gear and the helical planetary gearbox. To learn more about the advantages of these gearboxes, read on. Here are a few common uses for planetary gears. A planetary gearbox is used in many vehicles. Its efficiency makes it a popular choice for small engines. Here are three examples. Each has its benefits and drawbacks. Let’s explore each one.

helical planetary gearbox

In terms of price, the CZPT is an entry-level, highly reliable helical planetary gearbox. It is suitable for applications where space, weight, and torque reduction are of high concern. On the other hand, the X-Treme series is suitable for applications requiring high-acceleration, high-axial and radial loads, and high-speed performance. This article will discuss the benefits of each type of planetary gearbox.
A planetary gearbox’s traction-based design is a variation of the stepped-planet design. This variation relies on the compression of the elements of the stepped-planet design. The resulting design avoids restrictive assembly conditions and timing marks. Compared to conventional gearboxes, compound planetary gears have a greater transmission ratio, and they do so with an equal or smaller volume. For example, a 2:1 ratio compound planet would be used with a 50-ton ring gear, and the result would be the same as a 100-ton ring gear, but the planetary disks would be half the diameter.
The Helical planetary gearbox uses three components: an input, an output, and a stationary position. The basic model is highly efficient and transmits 97% of the input power. There are three main types of planetary gearboxes, each focusing on a different performance characteristic. The CZPT basic line is an excellent place to start your research into planetary gearboxes. In addition to its efficiency and versatility, this gearbox has a host of modular features.
The Helical planetary gearbox has multiple advantages. It is versatile, lightweight, and easy to maintain. Its structure combines a sun gear and a planet gear. Its teeth are arranged in a way that they mesh with each other and the sun gear. It can also be used for stationary applications. The sun gear holds the carrier stationary and rotates at the rate of -24/16 and -3/2, depending on the number of teeth on each gear.
A helical planetary gearbox can reduce noise. Its shape is also smaller, reducing the size of the system. The helical gears are generally quieter and run more smoothly. The zero helix-angle gears, in contrast, have smaller sizes and higher torque density. This is a benefit, but the latter also increases the life of the system and is less expensive. So, while the helical planetary gearbox has many advantages, the latter is recommended when space is limited.
The helical gearbox is more efficient than the spur gear, which is limited by its lack of axial load component. The helical gears, on the other hand, generate significant axial forces in the gear mesh. They also exhibit more sliding at the points of tooth contact, adding friction forces. As such, the Helical planetary gearbox is the preferred choice in servo applications. If you’re looking for a gearbox to reduce noise and improve efficiency, Helical planetary gearboxes are the right choice.
The main differences between the two types of planetary gears can be found in the design of the two outer rings. The outer ring is also called the sun gear. The two gears mesh together according to their own axes. The outer ring is the planetary gear’s carrier. Its weight is proportional to the portion of the ring that is stationary. The carrier sets the gaps between the two gears.
Helical gears have angled teeth and are ideal for applications with high loads. They are also extremely durable and can transfer a high load. A typical Helical gearbox has two pairs of teeth, and this ensures smooth transmission. In addition, the increased contact ratio leads to lower fluctuations in mesh stiffness, which means more load capacity. In terms of price, Helical planetary gears are the most affordable gearbox type.
The outer ring gear drives the inner ring gear and surrounding planetary parts. A wheel drive planetary gearbox may have as much as 332,000 N.m. torque. Another common type of planetary gearbox is wheel drive. It is similar to a hub, but the outer ring gear drives the wheels and the sun gear. They are often combined over a housing to maximize size. One-stage Helical gears can be used in bicycles, while a two-stage planetary gear system can handle up to 113,000 N.m. torque.
The design of a helical planetary geartrain is complicated. It must comply with several constraints. These constraints relate to the geometrical relationship of the planetary geartrains. This study of the possible design space of a Helical geartrain uses geometric layouts. The ring gear, sun, and ring gear have no effect on the ratio of the planetary transmission. Nonetheless, helical geartrains are a good choice for many applications.
planetarygearbox

Spur gear planetary gearbox

The combination of planetary gears and spur gears in a transmission system is called a planetary or spur gearbox. Both the planetary gear and spur gear have their own characteristics and are used in various kinds of vehicles. They work in a similar way, but are built differently. Here are some important differences between the two types of gears. Listed below are some of the most important differences between them:
Helical gears: As opposed to spur gears, helical gears generate significant axial forces in the gear mesh. They also feature greater sliding contact at the point of tooth contact. The helix angle of a gearbox is generally in the range of 15 to 30 degrees. The higher the helix angle, the more axial forces will be transmitted. The axial force in a helical gearbox is greater than that of a spur gear, which is the reason why helical gears are more efficient.
As you can see, the planetary gearhead has many variations and applications. However, you should take care in selecting the number of teeth for your planetary gear system. A five:1 spur gear drive ratio, for example, means that the sun gear needs to complete five revolutions for every output carrier revolution. To achieve this, you’ll want to select a sun gear with 24 teeth, or five mm for each revolution. You’ll need to know the metric units of the planetary gearhead for it to be compatible with different types of machines.
Another important feature of a planetary gearbox is that it doesn’t require all of the spur gears to rotate around the axis of the drive shaft. Instead, the spur gears’ internal teeth are fixed and the drive shaft is in the same direction as the output shaft. If you choose a planetary gearbox with fixed internal teeth, you’ll need to make sure that it has enough lubrication.
The other significant difference between a spur gear and a planetary gearbox is the pitch. A planetary gearbox has a high pitch diameter, while a spur gear has low pitch. A spur gear is able to handle higher torques, but isn’t as efficient. In addition, its higher torque capability is a big drawback. Its efficiency is similar to that of a spur gear, but it is much less noisy.
Another difference between planetary and spur gear motors is their cost. Planetary gear motors tend to be more expensive than spur gear motors. But spur gears are cheaper to produce, as the gears themselves are smaller and simpler. However, planetary gear motors are more efficient and powerful. They can handle lower torque applications. But each gear carries a fixed load, limiting their torque. A spur gear motor also has fewer internal frictions, so it is often suited for lower torque applications.
Another difference between spur gears and planetary gears is their orientation. Single spur gears are not coaxial gearboxes, so they’re not coaxial. On the other hand, a planetary gearbox is coaxial, meaning its input shaft is also coaxial. In addition to this, a planetary gearbox is made of two sets of gear wheels with the same orientation. This gives it the ability to achieve concentricity.
Another difference between spur gears and planetary gears is that a planetary gear has an integer number of teeth. This is important because each gear must mesh with a sun gear or a ring gear. Moreover, each planet must have a corresponding number of teeth. For each planet to mesh with the sun, the teeth must have a certain distance apart from the other. The spacing between planets also matters.
Besides the size, the planetary gear system is also known as epicyclic gearing. A planetary gear system has a sun gear in the center, which serves as the input gear. This gear has at least three driven gears. These gears engage with each other from the inside and form an internal spur gear design. These gear sets are highly durable and able to change ratios. If desired, a planetary gear train can be converted to another ratio, thereby enhancing its efficiency.
Another important difference between a spur gear and a planetary gearbox is the type of teeth. A spur gear has teeth that are parallel to the shaft, while a planetary gear has teeth that are angled. This type of gear is most suitable for low-speed applications, where torque is necessary to move the actuation object. Spur gears also produce noise and can damage gear teeth due to repeated collisions. A spur gear can also slip, preventing torque from reaching the actuation object.

China high quality Mixer Truck Gearbox Pmb6.5r120 with Water Outlet for 10m3 Mixer   compound planetary gearboxChina high quality Mixer Truck Gearbox Pmb6.5r120 with Water Outlet for 10m3 Mixer   compound planetary gearbox
editor by CX 2024-04-16

China factory Wholesale Plm-16 Concrete Mixer Truck Reducer, Plm-10/12 Hydraulic Planetary Reduction Gearbox Used for Concrete Trucks automatic gearbox

Product Description

The Mixer Truck Gear Box PLM-16 is a top-tier engineering marvel designed to power the largest and most demanding mixer trucks. This gearbox represents the epitome of performance, durability, and efficiency, making it the preferred choice for professionals seeking top-notch performance in their transportation and construction operations.
Crafted from the finest materials, the PLM-16 Gear Box boasts unparalleled strength and resilience. Its robust design and precision engineering allow it to effortlessly handle the heaviest loads and toughest working conditions, ensuring uninterrupted operation for your mixer truck.
The gear system of the PLM-16 is meticulously designed to offer seamless power transmission and maximum torque. This optimized gear configuration ensures that your mixer truck can mix and transport large volumes of material with ease, significantly improving production rates and efficiency.
Ease of installation and maintenance is a hallmark of the PLM-16 Gear Box. Its modular design allows for quick and straightforward access to internal components, enabling swift routine checks and repairs. This ensures minimal downtime and maximum uptime for your mixer truck, maximizing its profitability.
Safety is paramount in the design of the PLM-16 Gear Box. It incorporates state-of-the-art safety features, including overload protection and thermal sensors, that constantly monitor and safeguard the gearbox from potential damage. These safety mechanisms guarantee the safe and reliable operation of your mixer truck, protecting both the operator and the vehicle.
Moreover, the PLM-16 Gear Box is designed with fuel efficiency in mind. Its optimized gear ratios and precision engineering contribute to reduced fuel consumption, helping you save on operating costs while minimizing the environmental impact of your mixer truck.
In conclusion, the Mixer Truck Gear Box PLM-16 is a superior product that offers unmatched performance, durability, and efficiency. Its precision engineering, modular design, and advanced safety features make it the ultimate choice for powering the largest and most demanding mixer trucks in the industry. Whether you’re upgrading your existing mixer truck or purchasing a new one, the PLM-16 Gear Box is a worthy investment that will deliver long-term value and performance.
 

Model NO. PLM-16 Model PLM-16
Lead Time 5 Days Transport Package Standard Export Wooden Case
Colour as Your Request Usage Concrete Mixer
Weight 310KG Specification 56*56*75  
Trademark Bodeke Origin China
HS Code 8483457100 Production Capacity 100 Sets/Month

 

Technical data of Camray CMR conrete mixer gearbox
Model PLM-10 PLM-12 PLM-16
Max.Output Torque
Nm
60000 65,000 70000
Max.installation angle of Drum 11° 11° 11°
Max.Output speed
rpm
17 17 15
Max.Capacity of Drum   m³ 10 12 16
Weight(without oil)    KG 285 285 300

FAQs about Mixer Truck Speed Reducer

Q1: What is a mixer truck speed reducer?
A1: A mixer truck speed reducer is a mechanical device that reduces the speed of the mixer truck’s motor, increasing torque and allowing for more effective mixing. It helps to transfer power from the motor to the mixer drum more efficiently, ensuring smooth and consistent mixing.

Q2: Why is a speed reducer necessary for mixer trucks?
A2: A speed reducer is necessary for mixer trucks because it matches the speed and torque requirements of the mixer drum to the output of the truck’s motor. By reducing the speed, the reducer amplifies the torque, allowing the mixer drum to rotate at the optimal speed for mixing, while minimizing wear and tear on the motor.

Q3: How does a mixer truck speed reducer work?
A3: A mixer truck speed reducer typically consists of a series of gears or other mechanical components that transfer power from the motor to the mixer drum at a reduced speed. These gears are designed to mesh together, reducing the speed of rotation while increasing torque. This allows the mixer drum to rotate at a slower, more controlled speed, ensuring effective mixing.

Q4: What are the benefits of using a mixer truck speed reducer?
A4: Using a mixer truck speed reducer provides several benefits. It increases the torque output of the motor, allowing the mixer drum to rotate more effectively and mix materials more thoroughly. Additionally, it reduces wear and tear on the motor by matching the speed and torque requirements of the mixer drum, extending the motor’s lifespan. Furthermore, a speed reducer can improve the overall efficiency of the mixer truck, reducing fuel consumption and operational costs.

Q5: How often should a mixer truck speed reducer be maintained?
A5: The frequency of maintenance for a mixer truck speed reducer depends on the specific model and manufacturer’s recommendations. However, generally speaking, it is important to perform regular inspections and lubrication to ensure the reducer is operating smoothly and efficiently. Additionally, if any issues or malfunctions are noticed, it is crucial to address them promptly to prevent further damage or downtime. Regular maintenance can help extend the lifespan of the speed reducer and keep your mixer truck operating at CZPT performance.

Q6: What are the common issues that can arise with mixer truck speed reducers?
A6: Common issues that can arise with mixer truck speed reducers include wear and tear on gears, bearings, and other mechanical components. This can lead to reduced efficiency, increased noise, and ultimately, failure of the reducer. Lubrication issues, such as insufficient or contaminated lubricant, can also cause problems. Regular maintenance and inspection, as well as prompt repair of any issues, are crucial to preventing these common problems and ensuring the reliable operation of the speed reducer.

Q7.Are you manufacturer?  And what’s the delivery time?
A7:Yes, we are manufacturer and have our own factory. Generally, its in stock for common models, 25-30 days will be finished and sent to customer in time.

Q8.If we don’t find what we want on your website, what should we do?
A8: You can email us the descriptions and pictures of the products you need, We will check whether we can make it.

Q9.How about the inspection and Guarantee of products?
A9:We promise: all products are tested before ship, to confirm it will be working and  in good conditions when customers get. Also, we offer 12-month guarantee, if it doesn’t work due to quality issue in the period, we will send spares to repair for free.

Bodeke Industrial Components Co., Ltd. is a leading Chinese company specializing in the manufacturing and maintenance of a wide range of industrial equipment components. Our products find application in diverse sectors, including cement tanker trucks, excavators, rescue equipment for cement trucks, mixers, cranes, hydraulic motors, hydraulic pumps, and other industrial machinery.

Empower your industrial machinery with Bodeke – a leading Chinese manufacturer specializing in the repair and production of a wide range of equipment components.From cement tanker trucks and excavators to mixer trucks,cranes,hydraulic motors,and pumps,our precision-engineered products redefine reliability and performance.Elevate your operations with Bodeke’s quality components-your trusted partner in global industrial excellence.
Gearbox Pump Motor
     
PLM-7 reducer / gearbox PMP7YR120 reducer / gearbox 4623-552 pump 4633 motor
PLM-9 reducer / gearbox PMP7.2R129 reducer / gearbox 5423-518 pump 5433-138 motor
CML-10 reducer / gearbox PMP7.1R130 reducer / gearbox 6423-279 pump 6433  motor
CML-12 reducer / gearbox PMP7.5R130 reducer / gearbox Eaton 4623-552 pump Eaton 4633 motor
CML16 reducer / gearbox PMP7.8R140 reducer / gearbox Eaton 5423-518 pump Eaton 5433-138 motor
P3301 reducer / gearbox PMP8.0R140 reducer / gearbox Eaton 6423-279 pump Eaton 6433  motor
P4300 reducer / gearbox PMP9YR140 reducer / gearbox PV22 pump MF22  motor
P5300 reducer / gearbox PMP7.5R134 reducer / gearbox PV23 pump MF23 motor
P7300 reducer / gearbox PMP7.5R135 reducer / gearbox SPV22 pump SMF22  motor
  PLM-7 reducer / gearbox PMP7.5R136 reducer / gearbox SPV23 pump SMF23 motor
  PLM-9 reducer / gearbox PMP6sp reducer / gearbox PV070 pump MF070  motor
  CML-10 reducer / gearbox PMP 6.5sp reducer / gearbox PV089 pump MF089 motor
  CML-12 reducer / gearbox PMP 7.1sp reducer / gearbox SPV070 pump SMF070  motor
  CML16 reducer / gearbox PMP 7.5sp reducer / gearbox SPV089 pump SMF089 motor
  P3301 reducer / gearbox PMP 6cp reducer / gearbox PV110 pump MF110 motor
  P4300 reducer / gearbox PMP 6.5cp reducer / gearbox SPV110 pump SMF110 motor
  P5300 reducer / gearbox PMP 7.1cp reducer / gearbox PV112 pump MF112 motor
  P7300 reducer / gearbox PMP 7.5cp reducer / gearbox SPV112 pump SMF112 motor
PMB 6.0 reducer / gearbox 575L reducer / gearbox PV090 pump MF090 motor
PMB6R100 reducer / gearbox 577L reducer / gearbox SPV090 pump SMF090 motor
PMB6.5R120 reducer / gearbox 580L reducer / gearbox A4VTG71pump TMM070 motor
PMB7aspR120 reducer / gearbox 575S3W reducer / gearbox A4VTG90 pump TMM089 motor
PMB7.1R120 reducer / gearbox 577S3W reducer / gearbox 90C pump AA2FM63/A2FM90/61W Piston Motor
PMB7YR120 reducer / gearbox 580S3W reducer / gearbox 90A pump AA2FM80/A2FM90/62W Piston Motor
PMB7.2R129 reducer / gearbox PM51.2 reducer / gearbox MA4V090 pump AA2FM90/A2FM90/63W Piston Motor
PMB7.1R130 reducer / gearbox PM61.2 reducer / gearbox PMP P110 pump 90M75 motor
PMB7.5R130 reducer / gearbox PM71.2 reducer / gearbox PMP P90 pump 90M100 motor
PMB7.8R140 reducer / gearbox TMG51.2 reducer / gearbox PMH P110 pump MSF85 motor
PMB8.0R140 reducer / gearbox TMG61.2 reducer / gearbox PMH P90 pump PMP M110 motor
PMB9YR140 reducer / gearbox TMG71.2 reducer / gearbox A4VTG090HW100/33MRNC4C92F0000AS-0 pump PMH M90 motor
PMB7.5R134 reducer / gearbox P58 reducer / gearbox A4VTG90HW/32R-NLD10F001S pump PMH M110 motor
PMB7.5R135 reducer / gearbox P68 reducer / gearbox A4VTG71 hydraulic piston pump PMH M90 motor
PMB7.5R136 reducer / gearbox P70 reducer / gearbox T90R100-35-20 hydraulic piston pump A2FO23 PISTON pump
PMB 6sp reducer / gearbox P75S reducer / gearbox T90L100 hydraulic piston pump A2FO16 PISTON pump
PMB 6.5sp reducer / gearbox P75R reducer / gearbox T90R75hydraulic piston pump A2FO18 PISTON pump
PMB 7.1sp reducer / gearbox P80 reducer / gearbox T90L75hydraulic piston pump VB99-17 reducer / gearbox
PMB 7.5sp reducer / gearbox P90S reducer / gearbox A11VO40DRG/10R-NPC12N00 PISTON pump A2FO32/61L-VAB05 PISTON pump
PMB 6cp reducer / gearbox P90 reducer / gearbox A11VLO190LRDU2/11R-NZD12K02P-S PISTON pump HA4VTG090HW/33R
PMB 6.5cp reducer / gearbox TOP P58 reducer / gearbox A11VLO190LRDU2
ZTS P68 reducer / gearbox ZHP P75S reducer / gearbox A4VG180HD1MT1/32R-NSF02F571-S PISTON pump 875719000
ZTS P70 reducer / gearbox DD33-MF reducer / gearbox A7VO55LRDS/63L-NZB01-S PISTON pump 8483457100
ZTS P75S reducer / gearbox ZHP P68 reducer / gearbox Concrete Mixer Truck  Mixer Drum  Cement Mixer SAUER,Bonfiglioli,TOPUNIOU,KYB,REXROTH,  , ,PMP

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Function: Clutch
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Oscillating Base Type
Step: Double-Step
Samples:
US$ 1400/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Impact of Gear Tooth Design and Profile on the Efficiency of Planetary Gearboxes

The design and profile of gear teeth have a significant impact on the efficiency of planetary gearboxes:

  • Tooth Profile: The tooth profile, such as involute, cycloid, or modified profiles, affects the contact pattern and load distribution between gear teeth. An optimized profile minimizes stress concentration and ensures smooth meshing, contributing to higher efficiency.
  • Tooth Shape: The shape of gear teeth influences the amount of sliding and rolling motion during meshing. Gear teeth designed for more rolling and less sliding motion reduce friction and wear, enhancing overall efficiency.
  • Pressure Angle: The pressure angle at which gear teeth engage affects the force distribution and efficiency. Larger pressure angles can lead to higher efficiency due to improved load sharing, but they may require more space.
  • Tooth Thickness and Width: Optimized tooth thickness and width contribute to distributing the load more evenly across the gear face. Proper sizing reduces stress and increases efficiency.
  • Backlash: Backlash, the gap between meshing gear teeth, impacts efficiency by causing vibrations and energy losses. Properly controlled backlash minimizes these effects and improves efficiency.
  • Tooth Surface Finish: Smoother tooth surfaces reduce friction and wear. Proper surface finish, achieved through grinding or honing, enhances efficiency by reducing energy losses due to friction.
  • Material Selection: The choice of gear material influences wear, heat generation, and overall efficiency. Materials with good wear resistance and low friction coefficients contribute to higher efficiency.
  • Profile Modification: Profile modifications, such as tip and root relief, optimize tooth contact and reduce interference. These modifications minimize friction and increase efficiency.

In summary, the design and profile of gear teeth play a crucial role in determining the efficiency of planetary gearboxes. Optimal tooth profiles, shapes, pressure angles, thicknesses, widths, surface finishes, and material selections all contribute to reducing friction, wear, and energy losses, resulting in improved overall efficiency.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China factory Wholesale Plm-16 Concrete Mixer Truck Reducer, Plm-10/12 Hydraulic Planetary Reduction Gearbox Used for Concrete Trucks   automatic gearbox	China factory Wholesale Plm-16 Concrete Mixer Truck Reducer, Plm-10/12 Hydraulic Planetary Reduction Gearbox Used for Concrete Trucks   automatic gearbox
editor by CX 2024-04-16

China high quality CZPT CZPT Truck Gearbox Assy Used on Hw19710, Hw15710 Spareworks gearbox drive shaft

Product Description

SINOTRUK CZPT Truck Gearbox Assy Used on Hw19710, Hw15710 Spareworks

 

 

Company ChinaMach Industry Co.,Ltd
Brand SINOTRUK HOWO/WEICHAI/MAN/SHACMAN/FAW/FOTON/AUMAN/NORTHBENZ/SHXIHU (WEST LAKE) DIS.I/
QUALITY Original part/OE part
Payment term T/T L/C , Flexible billing method
Packing Standard packing

We can provide:
TRUCK
Sales Chinese trucks and construction machinery,Provide modificationsu,pgrades, consulting services
SPARE TRUCK
Supply China Truck spare parts and construction machinery parts. Products Include:  Sinotruk HOWO, CZPT Power , Fonton, Shacman, SHXIHU (WEST LAKE) DIS.I, DOOXIN
SERVICE
Provide cargo warehousing, packaging, shipping and export agency services
Agent procurement, inspection The inspection agency 
 

Application: Machinery, Heavy Duty Truck
Function: Distribution Power, Speed Changing
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Manual
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes

Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:

1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.

2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.

3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.

4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.

5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.

6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.

7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.

8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.

By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.

China high quality CZPT CZPT Truck Gearbox Assy Used on Hw19710, Hw15710 Spareworks   gearbox drive shaft	China high quality CZPT CZPT Truck Gearbox Assy Used on Hw19710, Hw15710 Spareworks   gearbox drive shaft
editor by CX 2023-11-29

China factory Fk530b Gearbox Suitable 10 Cbm Mixer Nbsp Truck with Good Quality in Stock planetary gearbox

Product Description

FK530B Gearbox Suitable 10 cbm mixer nbsp truck with Good Quality in Stoc

Product Description

 

Specification
  Model
FK130B FK230B FK270B FK330B FK430B FK530B FK730B FK830B FK930B
Mixer Volume (cbm) 3-5 4-6 6-7 7-8 9-10 10-12 12-14 15-16 17-20
Output Torque (Nm) 30000 36000 42000 48000 54000 70000 75000 85000 95000
Reduction ration 103 103 128.5 133.7 135.5 135.5 144.3 141.3 141.3
Drum angle (°) 15 15 15 15 15 15 13 12 10
Input rotation 2500 2500 2500 2500 2500 2500 2500 2500 2500
Radial load (kN) 70 72 100 130 160 170 190 235 275
Axial load (kN) 20 22 28 36 45 50 60 70 90
Weight (kg) 160 162 175 185 325 330 340 405 415
Lubricating oil (L) 5.5 7.0 7.0 7.5 11.5 11.5 11.5 13.5 15.5
Swing angle of Flange plate ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6
Model of Gear oil SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5
Connection port of Water pump NO NO NO NO NO NO NO NO NO
Connection flange of Hydraulic motor SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21

Detailed Photos

 

 

Application: Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Teeth Gear
Step: Stepless
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a significant role in enhancing the efficiency of conveyor belts used in mining operations:

  • High Torque Capability: Planetary gearboxes are capable of providing high torque output, which is essential for handling heavy loads of mined materials on conveyor belts.
  • Compact Design: The compact nature of planetary gearboxes allows them to be integrated into tight spaces, making them suitable for conveyor systems where space is limited.
  • Multi-Stage Design: Planetary gearboxes can achieve high gear ratios through multiple stages of gear reduction. This allows for efficient power transmission from the motor to the conveyor, reducing the load on the motor and increasing overall efficiency.
  • Load Distribution: Planetary gearboxes distribute the load across multiple planet gears, which helps in minimizing wear and ensuring longer lifespan of the gearbox.
  • Variable Speed Control: By using planetary gearboxes with variable speed capabilities, conveyor belts can be operated at different speeds to match the processing requirements, optimizing material handling and energy consumption.
  • Overload Protection: Some planetary gearboxes feature built-in overload protection mechanisms, safeguarding the gearbox and conveyor system from damage due to sudden increases in load.

Overall, planetary gearboxes enhance the efficiency, reliability, and performance of conveyor belts in mining operations by providing the necessary torque, compact design, and precise control needed to transport mined materials effectively.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Common Applications and Industries of Planetary Gearboxes

Planetary gearboxes are widely utilized across various industries and applications due to their unique design and performance characteristics. Some common applications and industries where planetary gearboxes are commonly used include:

  • Automotive Industry: Planetary gearboxes are found in automatic transmissions, hybrid vehicle systems, and powertrains. They provide efficient torque conversion and variable gear ratios.
  • Robotics: Planetary gearboxes are used in robotic joints and manipulators, providing compact and high-torque solutions for precise movement.
  • Industrial Machinery: They are employed in conveyors, cranes, pumps, mixers, and various heavy-duty machinery where high torque and compact design are essential.
  • Aerospace: Aerospace applications include aircraft actuation systems, landing gear mechanisms, and satellite deployment mechanisms.
  • Material Handling: Planetary gearboxes are used in equipment like forklifts and pallet jacks to provide controlled movement and high lifting capabilities.
  • Renewable Energy: Wind turbines use planetary gearboxes to convert low-speed, high-torque rotational motion of the blades into higher-speed rotational motion for power generation.
  • Medical Devices: Planetary gearboxes find applications in medical imaging equipment, prosthetics, and surgical robots for precise and controlled motion.
  • Mining and Construction: Planetary gearboxes are used in heavy equipment like excavators, loaders, and bulldozers to handle heavy loads and provide controlled movement.
  • Marine Industry: They are employed in marine propulsion systems, winches, and steering mechanisms, benefiting from their compact design and high torque capabilities.

The versatility of planetary gearboxes makes them suitable for applications that require compact size, high torque density, and efficient power transmission. Their ability to handle varying torque loads, offer high gear ratios, and maintain consistent performance has led to their widespread adoption across numerous industries.

China factory Fk530b Gearbox Suitable 10 Cbm Mixer Nbsp Truck with Good Quality in Stock   planetary gearbox	China factory Fk530b Gearbox Suitable 10 Cbm Mixer Nbsp Truck with Good Quality in Stock   planetary gearbox
editor by CX 2023-10-23

China The Main Planetary Gearbox on The 6 Concrete Mixer Truck (FK230B) efficiency of planetary gearbox

Product Description

The major planetary gearbox on the 6 concrete mixer truck (FK230B)
 

Specification
  Model
FKthirteen0B FKtwothree0B FK270B FK3three0B FK430B FK530B FK730B FKeight30B FK930B
Mixer Volume (cbm) 3-five 4-six 6-7 seven-eight nine-10 ten-12 12-fourteen 15-sixteen 17-twenty
Output Torque (Nm) 30000 36000 42000 48000 54000 70000 75000 85000 95000
Reduction ration 103 103 128.five 133.7 135.5 135.five 144.three 141.three 141.three
Drum angle (°) 15 15 15 15 15 fifteen thirteen twelve ten
Input rotation 2500 2500 2500 2500 2500 2500 2500 2500 2500
Radial load (kN) 70 72 100 130 a hundred and sixty one hundred seventy one hundred ninety 235 275
Axial load (kN) 20 22 28 36 45 fifty 60 70 90
Excess weight (kg) 160 162 one hundred seventy five 185 325 330 340 405 415
Lubricating oil (L) five.5 7. 7. seven.five eleven.5 eleven.five eleven.5 13.5 15.5
Swing angle of Flange plate ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6
Product of Gear oil SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-ninety/API GL4 GL5 SAE 85W-ninety/API GL4 GL5 SAE 85W-ninety/API GL4 GL5 SAE 85W-ninety/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5
Relationship port of Water pump NO NO NO NO NO NO NO NO NO
Link flange of Hydraulic motor SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
sixteen/32 Z21
SAE C
sixteen/32 Z21
SAE C
sixteen/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
sixteen/32 Z21

 

US $100-1,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Teeth Gear
Step: Stepless

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification
  Model
FK130B FK230B FK270B FK330B FK430B FK530B FK730B FK830B FK930B
Mixer Volume (cbm) 3-5 4-6 6-7 7-8 9-10 10-12 12-14 15-16 17-20
Output Torque (Nm) 30000 36000 42000 48000 54000 70000 75000 85000 95000
Reduction ration 103 103 128.5 133.7 135.5 135.5 144.3 141.3 141.3
Drum angle (°) 15 15 15 15 15 15 13 12 10
Input rotation 2500 2500 2500 2500 2500 2500 2500 2500 2500
Radial load (kN) 70 72 100 130 160 170 190 235 275
Axial load (kN) 20 22 28 36 45 50 60 70 90
Weight (kg) 160 162 175 185 325 330 340 405 415
Lubricating oil (L) 5.5 7.0 7.0 7.5 11.5 11.5 11.5 13.5 15.5
Swing angle of Flange plate ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6
Model of Gear oil SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5
Connection port of Water pump NO NO NO NO NO NO NO NO NO
Connection flange of Hydraulic motor SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
US $100-1,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Teeth Gear
Step: Stepless

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Specification
  Model
FK130B FK230B FK270B FK330B FK430B FK530B FK730B FK830B FK930B
Mixer Volume (cbm) 3-5 4-6 6-7 7-8 9-10 10-12 12-14 15-16 17-20
Output Torque (Nm) 30000 36000 42000 48000 54000 70000 75000 85000 95000
Reduction ration 103 103 128.5 133.7 135.5 135.5 144.3 141.3 141.3
Drum angle (°) 15 15 15 15 15 15 13 12 10
Input rotation 2500 2500 2500 2500 2500 2500 2500 2500 2500
Radial load (kN) 70 72 100 130 160 170 190 235 275
Axial load (kN) 20 22 28 36 45 50 60 70 90
Weight (kg) 160 162 175 185 325 330 340 405 415
Lubricating oil (L) 5.5 7.0 7.0 7.5 11.5 11.5 11.5 13.5 15.5
Swing angle of Flange plate ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6
Model of Gear oil SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5
Connection port of Water pump NO NO NO NO NO NO NO NO NO
Connection flange of Hydraulic motor SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21

Benefits of a Planetary Gearbox With Output Shaft

The output shaft of a Planetary Gearbox connects to the driven wheels, while the input shaft comes from the engine. These gears are interlinked and create a wide range of gear reductions, which are necessary to get a vehicle rolling comfortably. Gear reductions are the place where the various “gears” are located. Here are some examples. They can help you determine what you need for your vehicle. You might also want to learn about planetary gears.
planetarygearbox

Planetary gearboxes

Modern cars are most likely equipped with planetary gearboxes. If you’re unsure if your vehicle uses planetary gears, you should first consult your car’s owner’s manual. If not, contact your dealership’s service department for more information. Otherwise, you can do a quick search on the internet to find out whether your car has a planetary gearbox. These gearboxes are generally more complex than ordinary gears. Additionally, they are equipped with more parts and require lubrication.
In addition to their low noise levels, planetary gearboxes are also remarkably efficient at transmission. These features make them ideal for applications requiring high torque and small footprints. Unfortunately, there are many different types of planetary gearboxes on the market, making it difficult to find the right one. The following article will give you some guidelines to help you choose the right planetary gearbox for your needs. Let’s take a look!

Planetary gears

A planetary gearbox has two main components: the sun gear (also known as the central or input) and the planet gears (also known as outer or peripheral). These gears are connected together by a carrier to the output shaft of the machine. In some applications, it is necessary to use a planetary gearbox with lubrication to prevent wear and tear. A planetary gearbox also has a small ring gear that helps hold the planet gears together.
The main advantage of a planetary gearbox is that it uses several teeth that engage at once, allowing for high-speed reduction with a small number of gears. Because the gears are relatively small, they have lower inertia than their larger counterparts. Planetary gearboxes are compact, which makes them popular for space-constrained applications. Because of their compact size and efficiency, planetary gearboxes are also commonly used in motor vehicles.

Planetary gearboxes with output shaft

For high-speed, dynamic applications, planetary gearbox units with output shaft provide the optimal solution. Thanks to their low inertia, these gearheads deliver superior performance in many industrial applications. Additionally, their wide range of variants allows users to select the perfect product for their application. This article examines some of the key benefits of planetary gearboxes with output shaft. Read on to learn more.
The planetary gearbox has two major components: a sun gear and planet gears. The sun gear is usually the input gear, while the planet gears are located at the outer edges of the system casing. Planet gears are held together by a carrier that is connected to the output shaft. Before choosing a particular gearbox for your application, make sure that you check the specific requirements and the environment to which the unit will be subjected.
A planetary gearbox has less stages of gears, and thus lower backlash compared to spur gearboxes. Backlash is lost motion that occurs when the teeth of the gears are out of perfect alignment. This problem is common in all gears, but is significantly less in planetary gearboxes. As such, planetary gearboxes are more efficient. They can also be customized according to the specific engine model and motor flange.
planetarygearbox

Planetary gearboxes with carrier

A planetary gearbox is a type of gearbox with three or more stages. They have a sun gear, which is usually the input gear, and planet gears, also called the outer gears. The carrier that connects the planet gears to the output shaft is called a ring gear. A planetary gearbox is generally designed to meet specific application and environmental requirements, but there are some factors to consider when choosing one.
The compact footprint of planetary gear sets results in high heat dissipation. This can be a problem in applications with sustained performance or high speeds. As a result, planetary gear sets often include lubricants, which present a cooling effect while also reducing noise and vibration. Some planetary gears even feature a carrier to make the installation process easier. Here are some things to keep in mind when choosing a planetary gear set.
Planetary gearboxes with carrier have several advantages over other types of gearboxes. Unlike conventional gearboxes, planetary gears have a common central shaft, and the tangential forces between the gears cancel out at the center of the ring gear. Because of this, planetary gearboxes are commonly used in input/output applications, and their compact size allows for a wide range of gear reductions. These gears can also produce higher torque density.

Planetary gearboxes with traction

Planetary gears are similar to the planetary system, in that each pinion rotates around a sun gear. The output of the planetary gear unit is lower than the drive rotation speed, but the torque is higher. As the number of planet gear wheels increases, so does the torque. Planetary gear systems contain three to four planet gears, and each is in constant mesh with the others. Power applied to any one member rotates the entire assembly.
Typical applications for planetary gear sets include high-precision motion control. In these applications, high torque, torsional stiffness, and low backlash are required. Planetary gear sets are also ideal for motors with higher speeds. A number of factors contribute to the reliability of these devices. The low backlash and large torque capacity of a planetary gear motor allow them to be used in a wide range of applications.

Planetary gearboxes with electric motors

If you’re in the market for a new gearbox, you may have already heard about planetary gearboxes. The planetary gearbox is a high-efficiency, low-noise gearbox. CZPT manufactures high-torque planetary gearboxes with low backlash. They also make economy planetary gearboxes for lower loads. However, with so many different types available, choosing the right one for your needs can be challenging.
These planetary gearboxes are a compact alternative to conventional pinion-and-gear reducers. They offer high-speed reduction and high torque transfer, and are often used for space-constrained applications. But before you can understand how they work, you’ll need to understand a little about their construction. There are a few things to look for that you may not have noticed before.
The most common type of planetary gearbox is a PM81/LN. It features a set of DC brush motors with diameter 77mm, a stator, and two or more outer gears. Each of these gears is connected to an output shaft through a carrier. They can also be used with brakes, encoders, or a clutch. A planetary gearbox is one of the most reliable gearbox types on the market.

Planetary gearboxes with hydraulic motors

A planetary gearbox is a combination of two gears, the sun and the planets. The sun gear rotates at high speed, while the planets roll around and orbit around the ring gear. The output shaft has the same direction of rotation as the input shaft. The benefits of a planetary gearbox include high reduction ratios, efficiency, space-saving compactness, and higher overload capacity. These gears are also more stable and compact, and they do not suffer from self-locking properties.
Planetary gearboxes are a highly efficient way to power hydraulic lifts. They can be input via electric, hydraulic, or air motors. The drive arrangement can be mounted on a bare shaft, splined shaft, or a parallel keyed input shaft. Depending on the application, bespoke gearboxes can be manufactured with a variety of features and functions.
planetarygearbox

Planetary gearboxes with combustion engines

There are many different applications of planetary gear sets. The most common is the distribution of power between two wheels in a car’s drive axle. Four-wheel drives use two axle differentials, which are further augmented by a centre differential. Hybrid electric vehicles use summation gearboxes to distribute power from the combustion engine to the wheels and to an electric motor. Planetary gear sets also combine the two different types of motors to form one hybrid vehicle.
To understand how planetary gear sets work, it is important to understand the underlying mechanical principles. For example, Fig. 4.6 shows a stick diagram illustrating two planetary gear sets connected by a lever. The two levers are the same length, so the system is analogous to a single lever. When calculating the torque, it is essential to consider the lever diagram. Similarly, if two gear sets are connected by vertical links, the horizontal links must be horizontal.

China The Main Planetary Gearbox on The 6 Concrete Mixer Truck (FK230B)     efficiency of planetary gearboxChina The Main Planetary Gearbox on The 6 Concrete Mixer Truck (FK230B)     efficiency of planetary gearbox
editor by czh 2023-01-18

China Best Sales New CZPT CZPT Truck Parts Transmission Gearbox Assy Hw13710 Hw15710 near me supplier

Product Description

new CZPT CZPT truck components Transmission gearbox assy HW13710 HW15710 

technical specs:

reference photographs: 

suggested spare parts listing: 

Spare areas reference pictures: 

Our warehouse:

About our organization:

Part No. HW13710; HW15710
EN part name Sinotruk Transmission, HOWO Gearbox
Size:cm 140x75x80cm
Weight:kg 400KG

###

Pos Number of part Quantity Standard sepcification Designation
1 61557010008 1   Gearcase
2 VG2600010830 1   Air compressor gear cover
3 VG14010040 1   Gasket
4 VG2600010928 1   Front oil seal carrier
5 VG1047010038 1   Front oil seal
6 VG1500010008A 1   Camshaft gear cover
7 VG14010070 1   Gasket
8 190003813429  14 M8×22-8.8-ZN DIN939  Stud
9 190003932023  17 B8-ZN DIN137  Wave spring washer
10 190003900085  4 Q5281220 Spring type Straight pin
11 190003802576  1 M10×90-8.8-ZN DIN933  Hex head bolt
12 190003932024  1 B10-ZN DIN137 Wave spring washer
13 190003800571  1 M10×80-8.8-ZN DIN931 Hex head bolt
14 190003931122  10 B10-ZN DIN127  Spring lockwasher
15 190011260039  6 M6×30-8.8-H.Y GB/T5782 Hex head bolt
16 190003862524  2 M10×20-8.8-ZN DIN912 Socket cap screw
17 190003932025  2 A10-ZN DIN137  Saddle shaped spring washer
18 190003871252  17 M8-8-ZN DIN934M  Hexagon nut
19 190003813443  1 M8×30-8.8-ZN DIN939  Stud
20 190003962051  1 CM30×1.5-5.8 DIN7604 Screw plug
21 190003901507  4 10m6×16 DIN7 Straight pin
22 190003802523  3 M10×25-8.8-ZNDIN933  Hex head bolt 
23 190011620016  2 M12×45-8.8-ZN GB/T898 Stud
  190003813638    M12×35-8.8-ZN DIN939 Stud
24 190003813628  6 M12×30-8.8-ZN DIN939  Stud
25 190003888453  8 VM12-8-ZN DIN980 Self-locking nut
26 190003813467  2 Q1200865F3 Stud
27 VG9003080001 6   Sealing washer
28 VG2600010934 1   Front oil seal carrier gasket
29 190003930271  2 A10.5-ST DIN125 Flat washer
30 190003802561  6 M10×75-8.8-ZN DIN933  Hex head bolt
Part No. HW13710; HW15710
EN part name Sinotruk Transmission, HOWO Gearbox
Size:cm 140x75x80cm
Weight:kg 400KG

###

Pos Number of part Quantity Standard sepcification Designation
1 61557010008 1   Gearcase
2 VG2600010830 1   Air compressor gear cover
3 VG14010040 1   Gasket
4 VG2600010928 1   Front oil seal carrier
5 VG1047010038 1   Front oil seal
6 VG1500010008A 1   Camshaft gear cover
7 VG14010070 1   Gasket
8 190003813429  14 M8×22-8.8-ZN DIN939  Stud
9 190003932023  17 B8-ZN DIN137  Wave spring washer
10 190003900085  4 Q5281220 Spring type Straight pin
11 190003802576  1 M10×90-8.8-ZN DIN933  Hex head bolt
12 190003932024  1 B10-ZN DIN137 Wave spring washer
13 190003800571  1 M10×80-8.8-ZN DIN931 Hex head bolt
14 190003931122  10 B10-ZN DIN127  Spring lockwasher
15 190011260039  6 M6×30-8.8-H.Y GB/T5782 Hex head bolt
16 190003862524  2 M10×20-8.8-ZN DIN912 Socket cap screw
17 190003932025  2 A10-ZN DIN137  Saddle shaped spring washer
18 190003871252  17 M8-8-ZN DIN934M  Hexagon nut
19 190003813443  1 M8×30-8.8-ZN DIN939  Stud
20 190003962051  1 CM30×1.5-5.8 DIN7604 Screw plug
21 190003901507  4 10m6×16 DIN7 Straight pin
22 190003802523  3 M10×25-8.8-ZNDIN933  Hex head bolt 
23 190011620016  2 M12×45-8.8-ZN GB/T898 Stud
  190003813638    M12×35-8.8-ZN DIN939 Stud
24 190003813628  6 M12×30-8.8-ZN DIN939  Stud
25 190003888453  8 VM12-8-ZN DIN980 Self-locking nut
26 190003813467  2 Q1200865F3 Stud
27 VG9003080001 6   Sealing washer
28 VG2600010934 1   Front oil seal carrier gasket
29 190003930271  2 A10.5-ST DIN125 Flat washer
30 190003802561  6 M10×75-8.8-ZN DIN933  Hex head bolt

The Parts of a Gearbox

There are many parts of a Gearbox, and this article will help you understand its functions and components. Learn about its maintenance and proper care, and you’ll be on your way to repairing your car. The complexity of a Gearbox also makes it easy to make mistakes. Learn about its functions and components so that you’ll be able to make the best choices possible. Read on to learn more. Then, get your car ready for winter!
gearbox

Components

Gearboxes are fully integrated mechanical components that consist of a series of gears. They also contain shafts, bearings, and a flange to mount a motor. The terms gearhead and gearbox are not often used interchangeably in the motion industry, but they are often synonymous. Gearheads are open gearing assemblies that are installed in a machine frame. Some newer designs, such as battery-powered mobile units, require tighter integration.
The power losses in a gearbox can be divided into no-load and load-dependent losses. The no-load losses originate in the gear pair and the bearings and are proportional to the ratio of shaft speed and torque. The latter is a function of the coefficient of friction and speed. The no-load losses are the most serious, since they represent the largest proportion of the total loss. This is because they increase with speed.
Temperature measurement is another important preventive maintenance practice. The heat generated by the gearbox can damage components. High-temperature oil degrades quickly at high temperatures, which is why the sump oil temperature should be monitored periodically. The maximum temperature for R&O mineral oils is 93degC. However, if the sump oil temperature is more than 200degF, it can cause seal damage, gear and bearing wear, and premature failure of the gearbox.
Regardless of its size, the gearbox is a crucial part of a car’s drivetrain. Whether the car is a sports car, a luxury car, or a farm tractor, the gearbox is an essential component of the vehicle. There are two main types of gearbox: standard and precision. Each has its own advantages and disadvantages. The most important consideration when selecting a gearbox is the torque output.
The main shaft and the clutch shaft are the two major components of a gearbox. The main shaft runs at engine speed and the countershaft may be at a lower speed. In addition to the main shaft, the clutch shaft has a bearing. The gear ratio determines the amount of torque that can be transferred between the countershaft and the main shaft. The drive shaft also has another name: the propeller shaft.
The gears, shafts, and hub/shaft connection are designed according to endurance design standards. Depending on the application, each component must be able to withstand the normal stresses that the system will experience. Oftentimes, the minimum speed range is ten to twenty m/s. However, this range can differ between different transmissions. Generally, the gears and shafts in a gearbox should have an endurance limit that is less than that limit.
The bearings in a gearbox are considered wear parts. While they should be replaced when they wear down, they can be kept in service much longer than their intended L10 life. Using predictive maintenance, manufacturers can determine when to replace the bearing before it damages the gears and other components. For a gearbox to function properly, it must have all the components listed above. And the clutch, which enables the transmission of torque, is considered the most important component.
gearbox

Functions

A gearbox is a fully integrated mechanical component that consists of mating gears. It is enclosed in a housing that houses the shafts, bearings, and flange for motor mounting. The purpose of a gearbox is to increase torque and change the speed of an engine by connecting the two rotating shafts together. A gearbox is generally made up of multiple gears that are linked together using couplings, belts, chains, or hollow shaft connections. When power and torque are held constant, speed and torque are inversely proportional. The speed of a gearbox is determined by the ratio of the gears that are engaged to transmit power.
The gear ratios in a gearbox are the number of steps a motor can take to convert torque into horsepower. The amount of torque required at the wheels depends on the operating conditions. A vehicle needs more torque than its peak torque when it is moving from a standstill. Therefore, the first gear ratio is used to increase torque and move the vehicle forward. To move up a gradient, more torque is required. To maintain momentum, the intermediate gear ratio is used.
As metal-to-metal contact is a common cause of gearbox failure, it is essential to monitor the condition of these components closely. The main focus of the proactive series of tests is abnormal wear and contamination, while the preventative tests focus on oil condition and additive depletion. The AN and ferrous density tests are exceptions to this rule, but they are used more for detecting abnormal additive depletion. In addition, lubrication is critical to the efficiency of gearboxes.
gearbox

Maintenance

Daily maintenance is a critical aspect of the life cycle of a gearbox. During maintenance, you must inspect all gearbox connection parts. Any loose or damaged connection part should be tightened immediately. Oil can be tested using an infrared thermometer and particle counters, spectrometric analysis, or ferrography. You should check for excessive wear and tear, cracks, and oil leaks. If any of these components fail, you should replace them as soon as possible.
Proper analysis of failure patterns is a necessary part of any preventative maintenance program. This analysis will help identify the root cause of gearbox failures, as well as plan for future preventative maintenance. By properly planning preventative maintenance, you can avoid the expense and inconvenience of repairing or replacing a gearbox prematurely. You can even outsource gearbox maintenance to a company whose experts are knowledgeable in this field. The results of the analysis will help you create a more effective preventative maintenance program.
It is important to check the condition of the gearbox oil periodically. The oil should be changed according to its temperature and the hours of operation. The temperature is a significant determinant of the frequency of oil changes. Higher temperatures require more frequent changes, and the level of protection from moisture and water reduces by 75%. At elevated temperatures, the oil’s molecular structure breaks down more quickly, inhibiting the formation of a protective film.
Fortunately, the gear industry has developed innovative technologies and services that can help plant operators reduce their downtime and ensure optimal performance from their industrial gears. Here are 10 steps to ensure that your gearbox continues to serve its purpose. When you are preparing for maintenance, always keep in mind the following tips:
Regular vibration analysis is a vital part of gearbox maintenance. Increased vibration signals impending problems. Visually inspect the internal gears for signs of spiraling and pitting. You can use engineers’ blue to check the contact pattern of gear teeth. If there is a misalignment, bearings or housings are worn and need replacement. Also make sure the breathers remain clean. In dirty applications, this is more difficult to do.
Proper lubrication is another key factor in the life of gearboxes. Proper lubrication prevents failure. The oil must be free of foreign materials and have the proper amount of flow. Proper lubricant selection depends on the type of gear, reduction ratio, and input power. In addition to oil level, the lubricant must be regulated for the size and shape of gears. If not, the lubricant should be changed.
Lack of proper lubrication reduces the strength of other gears. Improper maintenance reduces the life of the transmission. Whether the transmission is overloaded or undersized, excessive vibration can damage the gear. If it is not properly lubricated, it can be damaged beyond repair. Then, the need for replacement gears may arise. However, it is not a time to waste a lot of money and time on repairs.