Tag Archives: box gear

China OEM 6000rpm High Precision 1500W Servo Motor Planetary Reducer Gear Box best automatic gearbox

Product Description

6000rpm High Qualitry 1500W Servo Motor Planetary Reducer Gear Box

Planetary gearbox is a kind of reducer with wide versatility. The inner gear adopts low carbon alloy steel carburizing quenching and grinding or nitriding process. Planetary gearbox has the characteristics of small structure size, large output torque, high speed ratio, high efficiency, safe and reliable performance, etc. The inner gear of the planetary gearbox can be divided into spur gear and helical gear. Customers can choose the right precision reducer according to the needs of the application.

Product Parameters

Characteristics:

1.Spiral bevel gear reversing mechanism to realize right angle steering output;
2.The installation distance of spiral bevel gear pair is adjustable and the working sound is lower;
3.Grinding bevel gear can be selected,and the working sound is more stable and quiet;
4.Integrated structure,high precision,high rigidity;
5.Double support case planet carrier structure,high reliable,suitable for high-speed frequent and reverse rotation;
6.With axial clearance adjustment function;
7.Collet type locking design,higher coaxiality of motor installtion;
8.Helical gear transmission ,low backlash,more accurate positioning;
9.Size range:60-120mm;
10.Ratio range:3-100;
11.Precision range:3-5arcmin (P1);5-8arcmin (P2)

Specifications PXR42 PXR60 PXR90 PXR120
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 780 1530 3300 6700
Max. Axial Load N 390 600 1500 3000
Torsional Rigidity Nm/arcmin 2.5 6 12 23
Max.Input Speed rpm 8000 8000 6000 6000
Rated Input Speed rpm 4000 4000 3000 3000
Noise dB ≤56 ≤64 ≤66 ≤66
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤3 ≤5 ≤5 ≤5
L2 arcmin ≤5 ≤7 ≤7 ≤7
P2 L1 arcmin ≤5 ≤8 ≤8 ≤8
L2 arcmin ≤7 ≤10 ≤10 ≤10
Moment Of Inertia Table L1 3 Kg*cm2 / 0.4 2.28 6.87
4 Kg*cm2 0.12 0.4 2.28 6.87
5 Kg*cm2 0.09 0.4 2.28 6.87
7 Kg*cm2 0.09 0.4 2.28 6.87
8 Kg*cm2 / 0.4 1.45 4.76
10 Kg*cm2 0.09 0.3 1.45 4.76
14 Kg*cm2 / 0.4 2.28 6.87
20 Kg*cm2 / 0.4 2.28 6.87
L2 25 Kg*cm2 0.09 0.4 2.28 6.87
30 Kg*cm2 / 0.4 2.28 6.87
35 Kg*cm2 0.09 0.4 2.28 6.87
40 Kg*cm2 0.09 0.4 2.28 6.87
50 Kg*cm2 0.09 0.3 1.45 4.76
70 Kg*cm2 0.09 0.3 1.45 4.76
100 Kg*cm2 0.07 0.3 1.45 4.76
Technical Parameter Level Ratio   PXR42 PXR60 PXR90 PXR120
Rated Torque L1 3 Nm / 40 105 165
4 Nm 17 45 130 230
5 Nm 15 45 130 230
7 Nm 12 45 100 220
8 Nm / 45 90 200
10 Nm 10 45 130 230
14 Nm / 45 100 220
20 Nm / 30 75 175
L2 25 Nm 15 45 130 230
30 Nm / 40 105 165
35 Nm 15 45 130 230
40 Nm 17 45 130 230
50 Nm 15 45 130 230
70 Nm 12 45 130 230
100 Nm 15 46 130 230
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 0.7 2.05 6.45 13.7
L2 kg 0.9 3.15 8.8 17.2

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

Application: Machine Tool
Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Certification: ISO9001
Samples:
US$ 736/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Smooth and Controlled Movement in Industrial Robots with Planetary Gearboxes

Planetary gearboxes play a crucial role in ensuring smooth and controlled movement in industrial robots, enhancing their precision and performance:

Reduced Backlash: Planetary gearboxes are designed to minimize backlash, which is the amount of play or free movement between gear teeth. This reduction in backlash results in precise and accurate motion control, allowing industrial robots to achieve precise positioning and repeatability.

High Gear Reduction Ratios: Planetary gearboxes offer high gear reduction ratios, allowing the robot’s motor to output higher torque while maintaining lower speed. This capability enables robots to handle heavy loads and perform tasks that require fine adjustments and delicate movements.

Compact Design: The compact and lightweight design of planetary gearboxes allows for their integration into the limited space of industrial robot joints and actuators. This compactness is crucial for maintaining the overall efficiency and agility of the robot’s movements.

Multi-Speed Capabilities: Planetary gearboxes can be designed with multiple gear stages, allowing industrial robots to operate at different speeds as needed for various tasks. This flexibility in speed selection enhances the robot’s versatility in performing tasks of varying complexities.

High Efficiency: Planetary gearboxes are known for their high efficiency, which translates to minimal energy loss during gear transmission. This efficiency ensures that the robot’s movements are smooth and consistent while optimizing energy consumption.

Torque Distribution: The arrangement of planetary gears allows for efficient distribution of torque across multiple gear stages. This feature ensures that the robot’s joints and actuators receive the appropriate amount of torque for controlled movement, even when handling varying loads.

Seamless Integration: Planetary gearboxes are designed to be easily integrated with servo motors and other robotic components. This seamless integration ensures that the gearbox’s performance is harmoniously aligned with the overall robotic system.

Precision and Accuracy: By providing precise gear reduction and motion control, planetary gearboxes enable industrial robots to perform tasks that demand high levels of precision and accuracy, such as assembly, welding, painting, and intricate material handling.

Reduced Vibrations: The reduced backlash and smooth gear engagement in planetary gearboxes contribute to minimized vibrations during robot operation. This results in quieter and more stable robot movements, further enhancing their performance and user experience.

Dynamic Load Handling: Planetary gearboxes can handle dynamic loads that may change during robot operation. Their ability to manage varying loads while maintaining controlled movement is essential for safe and reliable robot performance.

In summary, planetary gearboxes ensure smooth and controlled movement in industrial robots by minimizing backlash, offering high gear reduction ratios, providing a compact design, enabling multi-speed capabilities, maintaining high efficiency, distributing torque effectively, seamlessly integrating with robotic systems, enhancing precision and accuracy, reducing vibrations, and enabling dynamic load handling. These features collectively contribute to the precise and optimized motion of industrial robots in various applications and industries.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

China OEM 6000rpm High Precision 1500W Servo Motor Planetary Reducer Gear Box   best automatic gearbox	China OEM 6000rpm High Precision 1500W Servo Motor Planetary Reducer Gear Box   best automatic gearbox
editor by CX 2023-12-04

China Good quality CZPT Micro Planetary Plastic Gearbox 8mm RC Car Gear Box of Car application of planetary gearbox

Product Description

 

 

Product Description

Model:  ZWBMD006006-711
Rated Voltage: 3V
No Load Speed: 26rpm
No load current: 40mA
Rated Speed: 22rpm
Rated Current: 100mA
Rated Torque: 296.9g.cm
Overall Length : 30.9mm
Rated Torque of Gear Box: 330g.cm
Instant Torque of Gear Box: 800g.cm
Gear Ratio: 711:1
Gear Box Length: 16.9mm
 

Specifications:

Model Application Parameters Rated Torque of Gear Box Instant Torque of Gear Box Gear Ratio Gear Box Length
L1
Rated At No Load At Rated Load Overall Length
L
Voltage Speed Current Speed Current Torque
VDC rpm mA rpm mA gf.cm mN.m mm gf.cm gf.cm mm
ZWBMD006006-110 3.0 166 37 140 100 54.3 5.33 28.5 330 800 110.6 14.5
ZWBMD006006-148 3.0 124 37 105 100 72.8 7.14 28.5 330 800 148.1 14.5
ZWBMD006006-198 3.0 93 37 78 100 97.5 9.56 28.5 330 800 198.4 14.5
ZWBMD006006-266 3.0 69 37 58 100 130.5 12.80 28.5 330 800 265.7 14.5
ZWBMD006006-531 3.0 35 40 29 100 221.7 21.74 30.9 330 800 530.8 16.9
ZWBMD006006-711 3.0 26 40 21 100 296.9 29.12 30.9 330 800 711.0 16.9
ZWBMD006006-952 3.0 19 40 16 95 330 32.36 30.9 330 800 952.2 16.9
ZWBMD006006-1275 3.0 14 40 12 85 330 32.36 30.9 330 800 1275.2 16.9
ZWBMD006006-1708 3.0 11 40 10 75 330 32.36 30.9 330 800 1707.9 16.9

above specifications just for reference and customizable according to requirements.

Please let us know your requirements and we will provide you with micro transmission solutions.

2D Drawing

Detailed Photos

 

 

Application

Smart wearable devices   watch,VR,AR,XR and etc.
Household application kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc.
communication equipment 5G base station,video conference,mobile phone and etc.
Office automation equipments   scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine,  screen, lifting socket,  display,notebook PC and etc.
Automotive products  conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc.
Toys and models  radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc.
Medical equipments  blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc.
Industrials   flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc.
Electric power tools  electric drill, screwdriver,garden tool and etc.
Precision instruments  optics instruments,automatic vending machine, wire-stripping machine and etc.
Personal care tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc.
Consumer electronics camera, mobile phone,digital camera, automatic retracting device,camcorder,  kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc.
robots educational robot, programming robot, medical robot, escort robot and etc.

Company Profile

HangZhou CZPT Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly. 

Workshop

Testing Equipment

1) Competitive Advantages

  • 1) Competitive Advantages
    19+year experience in manufacturing motor gearbox
    We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
    Competitive Price
    Product Performance: Low noise, High efficiency, Long lifespan
    Prompt Delivery: 15 working days after payment
    Small Orders Accepted

 2) Main Products

  • Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,

  • Customized worm and gear transmission machinery;
  • Precise electromechanical motion module;
  • Precise component and assembly of plastic and metal powder injection.

 

Our Services

  • ODM & OEM
  • Gearbox design and development
  • Related technology support
  • Micro drive gearbox custom solution

Packaging & Shipping

1) Packing Details

packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.

2) Shipping Details

samples will be shipped within 10 days;
batch order leading time according to the actual situation.

 

Certifications

Certifications

We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).

and more…

 

FAQ

FAQ

1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.

2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.

3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.

4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.

5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.

6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide. 

7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.

8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.

9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.

10. How do contact us ?
 Please send an inquiry

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Camera
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase, Micro Gearbox
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Samples:
US$ 90/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetarygearbox

Benefits of a Planetary Gearbox With Output Shaft

The output shaft of a Planetary Gearbox connects to the driven wheels, while the input shaft comes from the engine. These gears are interlinked and create a wide range of gear reductions, which are necessary to get a vehicle rolling comfortably. Gear reductions are the place where the various “gears” are located. Here are some examples. They can help you determine what you need for your vehicle. You might also want to learn about planetary gears.

Planetary gearboxes

Modern cars are most likely equipped with planetary gearboxes. If you’re unsure if your vehicle uses planetary gears, you should first consult your car’s owner’s manual. If not, contact your dealership’s service department for more information. Otherwise, you can do a quick search on the internet to find out whether your car has a planetary gearbox. These gearboxes are generally more complex than ordinary gears. Additionally, they are equipped with more parts and require lubrication.
In addition to their low noise levels, planetary gearboxes are also remarkably efficient at transmission. These features make them ideal for applications requiring high torque and small footprints. Unfortunately, there are many different types of planetary gearboxes on the market, making it difficult to find the right one. The following article will give you some guidelines to help you choose the right planetary gearbox for your needs. Let’s take a look!

Planetary gears

A planetary gearbox has two main components: the sun gear (also known as the central or input) and the planet gears (also known as outer or peripheral). These gears are connected together by a carrier to the output shaft of the machine. In some applications, it is necessary to use a planetary gearbox with lubrication to prevent wear and tear. A planetary gearbox also has a small ring gear that helps hold the planet gears together.
The main advantage of a planetary gearbox is that it uses several teeth that engage at once, allowing for high-speed reduction with a small number of gears. Because the gears are relatively small, they have lower inertia than their larger counterparts. Planetary gearboxes are compact, which makes them popular for space-constrained applications. Because of their compact size and efficiency, planetary gearboxes are also commonly used in motor vehicles.

Planetary gearboxes with output shaft

For high-speed, dynamic applications, planetary gearbox units with output shaft provide the optimal solution. Thanks to their low inertia, these gearheads deliver superior performance in many industrial applications. Additionally, their wide range of variants allows users to select the perfect product for their application. This article examines some of the key benefits of planetary gearboxes with output shaft. Read on to learn more.
The planetary gearbox has two major components: a sun gear and planet gears. The sun gear is usually the input gear, while the planet gears are located at the outer edges of the system casing. Planet gears are held together by a carrier that is connected to the output shaft. Before choosing a particular gearbox for your application, make sure that you check the specific requirements and the environment to which the unit will be subjected.
A planetary gearbox has less stages of gears, and thus lower backlash compared to spur gearboxes. Backlash is lost motion that occurs when the teeth of the gears are out of perfect alignment. This problem is common in all gears, but is significantly less in planetary gearboxes. As such, planetary gearboxes are more efficient. They can also be customized according to the specific engine model and motor flange.
planetarygearbox

Planetary gearboxes with carrier

A planetary gearbox is a type of gearbox with three or more stages. They have a sun gear, which is usually the input gear, and planet gears, also called the outer gears. The carrier that connects the planet gears to the output shaft is called a ring gear. A planetary gearbox is generally designed to meet specific application and environmental requirements, but there are some factors to consider when choosing one.
The compact footprint of planetary gear sets results in high heat dissipation. This can be a problem in applications with sustained performance or high speeds. As a result, planetary gear sets often include lubricants, which present a cooling effect while also reducing noise and vibration. Some planetary gears even feature a carrier to make the installation process easier. Here are some things to keep in mind when choosing a planetary gear set.
Planetary gearboxes with carrier have several advantages over other types of gearboxes. Unlike conventional gearboxes, planetary gears have a common central shaft, and the tangential forces between the gears cancel out at the center of the ring gear. Because of this, planetary gearboxes are commonly used in input/output applications, and their compact size allows for a wide range of gear reductions. These gears can also produce higher torque density.

Planetary gearboxes with traction

Planetary gears are similar to the planetary system, in that each pinion rotates around a sun gear. The output of the planetary gear unit is lower than the drive rotation speed, but the torque is higher. As the number of planet gear wheels increases, so does the torque. Planetary gear systems contain three to four planet gears, and each is in constant mesh with the others. Power applied to any one member rotates the entire assembly.
Typical applications for planetary gear sets include high-precision motion control. In these applications, high torque, torsional stiffness, and low backlash are required. Planetary gear sets are also ideal for motors with higher speeds. A number of factors contribute to the reliability of these devices. The low backlash and large torque capacity of a planetary gear motor allow them to be used in a wide range of applications.

Planetary gearboxes with electric motors

If you’re in the market for a new gearbox, you may have already heard about planetary gearboxes. The planetary gearbox is a high-efficiency, low-noise gearbox. CZPT manufactures high-torque planetary gearboxes with low backlash. They also make economy planetary gearboxes for lower loads. However, with so many different types available, choosing the right one for your needs can be challenging.
These planetary gearboxes are a compact alternative to conventional pinion-and-gear reducers. They offer high-speed reduction and high torque transfer, and are often used for space-constrained applications. But before you can understand how they work, you’ll need to understand a little about their construction. There are a few things to look for that you may not have noticed before.
The most common type of planetary gearbox is a PM81/LN. It features a set of DC brush motors with diameter 77mm, a stator, and two or more outer gears. Each of these gears is connected to an output shaft through a carrier. They can also be used with brakes, encoders, or a clutch. A planetary gearbox is one of the most reliable gearbox types on the market.

Planetary gearboxes with hydraulic motors

A planetary gearbox is a combination of two gears, the sun and the planets. The sun gear rotates at high speed, while the planets roll around and orbit around the ring gear. The output shaft has the same direction of rotation as the input shaft. The benefits of a planetary gearbox include high reduction ratios, efficiency, space-saving compactness, and higher overload capacity. These gears are also more stable and compact, and they do not suffer from self-locking properties.
Planetary gearboxes are a highly efficient way to power hydraulic lifts. They can be input via electric, hydraulic, or air motors. The drive arrangement can be mounted on a bare shaft, splined shaft, or a parallel keyed input shaft. Depending on the application, bespoke gearboxes can be manufactured with a variety of features and functions.
planetarygearbox

Planetary gearboxes with combustion engines

There are many different applications of planetary gear sets. The most common is the distribution of power between two wheels in a car’s drive axle. Four-wheel drives use two axle differentials, which are further augmented by a centre differential. Hybrid electric vehicles use summation gearboxes to distribute power from the combustion engine to the wheels and to an electric motor. Planetary gear sets also combine the two different types of motors to form one hybrid vehicle.
To understand how planetary gear sets work, it is important to understand the underlying mechanical principles. For example, Fig. 4.6 shows a stick diagram illustrating two planetary gear sets connected by a lever. The two levers are the same length, so the system is analogous to a single lever. When calculating the torque, it is essential to consider the lever diagram. Similarly, if two gear sets are connected by vertical links, the horizontal links must be horizontal.

China Good quality CZPT Micro Planetary Plastic Gearbox 8mm RC Car Gear Box of Car   application of planetary gearboxChina Good quality CZPT Micro Planetary Plastic Gearbox 8mm RC Car Gear Box of Car   application of planetary gearbox
editor by CX 2023-11-25

China manufacturer Best Price High Torque Helical Gear Ratio 10: 1 Planetary Gear Box components of gearbox

Product Description

Best Price High Torque Helical Gear Ratio 10:1 Planetary Gear Box

Nickel chromium molybdenum alloy steel gear is manufactured with carburizing heat treatment for high abrasion resistance and impact toughness and by honing process to increase gear precision and low noise operation.Internal gear bore uses needle roller to obtain higher abrasion resistance and strength.

Product Description

1.Right angle steering output realized by spiral bevel gear reversing mechanism
2.The installation distance of spiral bevel gear pair can be adjusted, and the working sound is lower
3.Grinding bevel gear pair can be selected, and the working sound is more stable and quiet
4.Integrated design, high precision and high rigidity
5.Double support cage planet carrier structure, high reliability, suitable for high-speed and frequent CZPT and reverse rotation
6.Compared with the corresponding square fuselage series, it has the same performance and higher cost performance
7.Coupling design, more connection options, keyway can be opened
8.Helical gear transmission, low return clearance and more accurate positioning
9.Size range:140-180
10.Ratio range:3-100
11.Precision range:3-5arcmin (P1);5-8arcmin (P2)

Product Parameters

Specifications PAR140 PAR180
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 9400 14500
Max. Axial Load N 4700 7250
Torsional Rigidity Nm/arcmin 47 130
Max.Input Speed rpm 6000 6000
Rated Input Speed rpm 3000 3000
Noise dB ≤68 ≤68
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤5 ≤5
L2 arcmin ≤7 ≤7
P2 L1 arcmin ≤8 ≤8
L2 arcmin ≤10 ≤10
Moment Of Inertia Table L1 3 Kg*cm2 23.5 69.2
4 Kg*cm2 21.5 68.6
5 Kg*cm2 21.5 68.6
7 Kg*cm2 21.5 68.6
8 Kg*cm2 20.5 /
10 Kg*cm2 20.1 66.2
14 Kg*cm2 / 68.6
20 Kg*cm2 / 68.6
L2 25 Kg*cm2 6.88 23.8
30 Kg*cm2 7.1 22.2
35 Kg*cm2 6.88 22.2
40 Kg*cm2 6.88 22.2
50 Kg*cm2 6.88 22.2
70 Kg*cm2 6.88 22.2
100 Kg*cm2 6.34 21.6
Technical Parameter Level Ratio   PAR140 PAR180
Rated Torque L1 3 Nm 360 880
4 Nm 480 1100
5 Nm 480 1100
7 Nm 480 1100
8 Nm 440 /
10 Nm 360 1100
L2 14 Nm / 1100
20 Nm / 1100
25 Nm 480 1100
30 Nm 360 880
35 Nm 480 1100
40 Nm 480 1100
50 Nm 480 1100
70 Nm 480 1100
100 Nm 360 1100
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 20.8 41.9
L2 kg 26.5 54.8

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

FAQ

1. who are we?
Hefa Group is based in ZheJiang , China, start from 1998,has a 3 subsidiaries in total.The Main Products is planetary gearbox,timing belt pulley, helical gear,spur gear,gear rack,gear ring,chain wheel,hollow rotating platform,module,etc

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3. how to choose the suitable planetary gearbox?
First of all,we need you to be able to provide relevant parameters.If you have a motor drawing,it will let us recommend a suitable gearbox for you faster.If not,we hope you can provide the following motor parameters:output speed,output torque,voltage,current,ip,noise,operating conditions,motor size and power,etc

4. why should you buy from us not from other suppliers?
We are a 22 years experiences manufacturer on making the gears, specializing in manufacturing all kinds of spur/bevel/helical gear, grinding gear, gear shaft, timing pulley, rack, planetary gear reducer, timing belt and such transmission gear parts

5. what services can we provide?
Accepted Delivery Terms: Fedex,DHL,UPS;
Accepted Payment Currency:USD,EUR,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,PayPal,Western Union;
Language Spoken:English,Chinese,Japanese

Application: Industrial
Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Certification: ISO9001
Samples:
US$ 1215/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China manufacturer Best Price High Torque Helical Gear Ratio 10: 1 Planetary Gear Box   components of gearbox	China manufacturer Best Price High Torque Helical Gear Ratio 10: 1 Planetary Gear Box   components of gearbox
editor by CX 2023-11-14

China Hot selling Planetary Gear Box Automatic Machinery CZPT Transmission Gearbox Pharmaceutical Equipments comer gearbox

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Taibang planetary gear motor is high energy efficiency,low noise,long service life,which is widely used in various industry.

Model Instruction
 

GE 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

Main Technical Performance
 

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

 

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

Application: Machinery, Agricultural Machinery, Automatic Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Role of Planetary Gearboxes in Powertrain Systems of Electric and Hybrid Vehicles

Planetary gearboxes play a critical role in the powertrain systems of both electric and hybrid vehicles, contributing to their efficiency and performance:

Electric Motor Integration: In electric vehicles (EVs) and hybrid vehicles, planetary gearboxes are commonly used to connect the electric motor to the drivetrain. They enable torque and speed transformation, ensuring the motor’s output is suitable for the vehicle’s desired speed range and load conditions.

Torque Splitting in Hybrids: Hybrid vehicles often have both an internal combustion engine (ICE) and an electric motor. Planetary gearboxes enable torque splitting between the two power sources, optimizing their combined performance for various driving scenarios, such as electric-only mode, hybrid mode, and regenerative braking.

Regenerative Braking: Planetary gearboxes facilitate regenerative braking in electric and hybrid vehicles. They enable the electric motor to function as a generator, converting kinetic energy into electrical energy during deceleration. This energy can then be stored in the vehicle’s battery for later use.

Compact Design: Planetary gearboxes offer a compact design with a high power density, making them suitable for the limited space available in electric and hybrid vehicles. This compactness allows manufacturers to maximize interior space and accommodate battery packs, drivetrain components, and other systems.

Efficient Power Distribution: The unique arrangement of planetary gears allows for efficient power distribution and torque management. This is particularly important in electric and hybrid powertrains, where optimal power allocation between different components contributes to overall efficiency.

CVT Functionality: Some hybrid vehicles incorporate Continuously Variable Transmission (CVT) functionality using planetary gearsets. This enables seamless and efficient transitions between various gear ratios, improving the driving experience and enhancing fuel efficiency.

Performance Modes: Planetary gearboxes facilitate the implementation of different performance modes in electric and hybrid vehicles. These modes, such as “Sport” or “Eco,” adjust the power distribution and gear ratios to optimize performance or energy efficiency based on the driver’s preferences.

Reduction Gear for Electric Motors: Electric motors often operate at high speeds and require reduction gearing to match the vehicle’s requirements. Planetary gearboxes provide the necessary gear reduction while maintaining efficiency and torque output.

Efficient Torque Transfer: Planetary gearboxes ensure efficient transfer of torque from the power source to the wheels, resulting in smooth acceleration and responsive performance in electric and hybrid vehicles.

Integration with Energy Storage: Planetary gearboxes contribute to the integration of energy storage systems, such as lithium-ion batteries, by efficiently connecting the power source to the drivetrain while managing power delivery and regeneration.

In summary, planetary gearboxes are integral components of the powertrain systems in electric and hybrid vehicles. They enable efficient power distribution, torque transformation, regenerative braking, and various driving modes, contributing to the overall performance, efficiency, and sustainability of these vehicles.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

China Hot selling Planetary Gear Box Automatic Machinery CZPT Transmission Gearbox Pharmaceutical Equipments   comer gearbox	China Hot selling Planetary Gear Box Automatic Machinery CZPT Transmission Gearbox Pharmaceutical Equipments   comer gearbox
editor by CX 2023-11-01

China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection differential gearbox

Product Description

Product Description GFT series / CZPT 701 / CZPT CTM1016 / CZPT riduttorr RRTD180

ZHangZhoug New CZPT Hydraulic Co., Ltd. is a professional manufacturer of planetary reducers/gearbox/final drive. At present,we developed tens of thousands specifications of the planetary reducer/gearbox, travel drive,swing drive and winch drive.The ratio range is 3.3~9000, and the output torque range is 500~1200000N.m. The installation, dimensions and performance parameters of the final drive are exactly the same as famous European brands, which can be perfectly replaced and interchanged.

Details as follows:
BONFIGLIOLI (300 series, 700C series, 700T series, 600W series)
BREVINI (EM, ED, ET, EQ, EC, PD, PDA, CTD, CTU, SL types)
DINAMIC OIL (types RE, GB, RA, GBA)
REGGIANA RIDUTTORI (RR, RA type)
COMER (PG, PGA, PGR, PGW types)
REXROTH (GFT, GFT-W, GFB type)
ROSSI (R2E, R3E, R4E, RCE, RC2E, RC3E, MR2E, MR3E, MR4E, MRCE, MRC2E, MRC3E)
ZOLLERN (ZHP3.13, ZHP3.15, ZHP3.19, ZHP3.20, ZHP3.22, ZHP3.24, ZHP3.25, ZHP3.26, ZHP3.27, ZHP3.29, ZHP3.31, ZHP3.32)
FAIRFIELD, AUBURN GEAR, OMNI GEAR, O&K, etc. Therefore,our planetary reducer/gearbox can be used to replace the gearboxes of these brands.

Bonfiglioli Dinamic oil Brevini RR
300 RE110 EM1571 ED1571 ET2571 RR65/105
301 RE210 EM1030 ED1030 ET2030 RR110/210
303 RE240 ED2030 ET3030 EQ4030 RR310
304 RE310 ED2040 ET3040 EQ4040 RR510
305 RE510 EM1045 ED2045 ET3045 RR510/710
306 RE810 EM1046 ED2046 ET3046 RR810
EM1065 ED2065 ET3065
307 RE1571 EM1090 ED2090 ET3090 RR1571
RE1520
309 RE1520 ED2150 ET3150 EQ4150 RR1700
310 RE2520 ED2250 ET3250 EQ4250 RR2700
ED2320 ET3320 EQ4320
311 RE3510 SL3001,SL3002,SL3003,SL3004 RR4000
313 RE3511,RE3512,RE3513,RE3514 SL4001,SL4002,SL4003,SL4004 RR5000/RR5200
315 RE6520 SL6001,SL6002,SL6003,SL6004   SL8501,SL8502,SL8503 RR6500
316 GB11000 SL12001,SL12002,SL12003,SL12004 RR8000
317 GB18000,GB21000, SL18001,SL18002,SL18003 RR10000
318 GB26000 SL25001,SL25002,SL25003,SL25004    RR15000
319 GB53000,GB53000 SL35001,SL35002,SL35003,SL35004    RR20000
320      
321 GB61000    

 

300 Series Planetary Geabox Parameter

 

  Model    

    Rated Output Torque  

(N.m)

Max.Power

(KW)

Max.Input Speed

(rpm)

Ratio
   
301 1750 30 3000 3.4-2700 7-700
303 2500 40 3000 3.6-2800 9-800
305 5000 60 3000 3.6-2800 9-800
306 8500 75 2500 3.6-2900 9-800
307 12500 100 2500 3.4-2400 13-700
309 18500 130

2500

3.4-2400 13-700
310 25000 150 2000 4-2500 40-900
311 35000 180 2000 4-2100 18-800
313 50000 200 2000 4-2200 18-800
315 80000 250 1500 4-1800 70-900
316 105000 270 1500 4.4-1200 50-600
317 150000 300 1000 4-1900 70-900
318 200000 340 1000 4.4-1100 200-700
319 30000 380 500 4.8-1400 300-800

Office Environment

Our Equipment
Accessories for 300 Series

Certificate

Contact Us

How to contact us?
 Nancy Zhang

Foreign Sales&Marketing Manager
HangZhou Kemer Engineering Machinery Co.,LTD
 

After-sales Service: on Line
Warranty: 1 Year, 1 Year
Type: Drive, Motor
Application: Industrial Equipment
Certification: ISO9001: 2000
Condition: New
Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining a compact form factor poses several challenges due to the intricate arrangement of gears and the need to balance various factors:

Space Constraints: Increasing the gear ratio typically requires adding more planetary stages, resulting in additional gears and components. However, limited available space can make it challenging to fit these additional components without compromising the compactness of the gearbox.

Efficiency: As the number of planetary stages increases to achieve higher gear ratios, there can be a trade-off in terms of efficiency. Additional gear meshings and friction losses can lead to decreased overall efficiency, impacting the gearbox’s performance.

Load Distribution: The distribution of loads across multiple stages becomes critical when designing high gear ratio planetary gearboxes. Proper load distribution ensures that each stage shares the load proportionally, preventing premature wear and ensuring reliable operation.

Bearing Arrangement: Accommodating multiple stages of planetary gears requires an effective bearing arrangement to support the rotating components. Improper bearing selection or arrangement can lead to increased friction, reduced efficiency, and potential failures.

Manufacturing Tolerances: Achieving high gear ratios demands tight manufacturing tolerances to ensure accurate gear tooth profiles and precise gear meshing. Any deviations can result in noise, vibration, and reduced performance.

Lubrication: Adequate lubrication becomes crucial in maintaining smooth operation and reducing friction as gear ratios increase. However, proper lubrication distribution across multiple stages can be challenging, impacting efficiency and longevity.

Noise and Vibration: The complexity of high gear ratio planetary gearboxes can lead to increased noise and vibration levels due to the higher number of gear meshing interactions. Managing noise and vibration becomes essential for ensuring acceptable performance and user comfort.

To address these challenges, engineers employ advanced design techniques, high-precision manufacturing processes, specialized materials, innovative bearing arrangements, and optimized lubrication strategies. Achieving the right balance between high gear ratios and compactness involves careful consideration of these factors to ensure the gearbox’s reliability, efficiency, and performance.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Factors to Consider When Selecting a Planetary Gearbox

Choosing the right planetary gearbox for a specific application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:

  • Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
  • Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
  • Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
  • Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
  • Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
  • Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
  • Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
  • Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
  • Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
  • Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
  • Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.

By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.

China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection   differential gearbox	China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection   differential gearbox
editor by CX 2023-10-26

China manufacturer ZD 80mm Low Backlash High Precision Planetary Gear Box For Servo Motor cyclo planetary gearbox

Product Description

ZD 80mm Low Backlash High Precision Planetary Gear Box For Servo Motor
 

Detailed Photos

Related Gearbox

Product Description

 

ZDE Round mounting flange
ZDWE Right angle input round mounting flange
ZDF Square mounting flange
ZDWF Right angle input square mounting flange
ZDS High stiffness series
Gear Ratio:  
Single stage 3, 4, 5, 8, 10
Two stages 9, 12, 15, 16, 20, 25, 32, 40, 64
Three stages 60, 80, 100, 120, 160, 200, 256, 320, 512

 

Product Parameters

 

SPECIFICATIONS STAGE RATIO 40 60 80 120 160
RATED OUTPUT TORQUE N.M 1 3 4.5 12 40 80 400
4 6 16 50 110 450
5 6 16 50 110 450
8 5 15 45 100 400
10 4 12 40 80 305
2 9 40 100 210
12 16.5 40 100 210 700
15 16.5 40 100 210 700
16 20 44 120 260 800
20 20 44 120 260 800
25 18 40 110 230 700
32 20 44 120 260 800
40 18 40 110 230 700
64 7.5 18 45 100 400
3 60 16.5 40 100 210
80 20 44 120 260
100 20 44 120 260
120 16.5 40 100 210
160 20 44 120 260
200 18 40 110 230
256 20 44 120 260
320 18 40 110 230
512 7.5 18 45 100
Scram Torque N.m 1,2,3 3-512 2  times  of  rated  torque  
Rated speed rpm 1,2 3-512 3000 3000 3000 3000 3000
Max speed rpm 1,2 3-100 4500 4500 4500 4500 4500
Backlash arcmin 1   <12 <8 <8 <8 <8
2 <15 <12 <12 <12 <12
3 <18 <15 <15 <15 <15
Torsional Rigidity N.M/arcmin 1,2,3   0.7 1.8 4.5 12 38
Allow radial N 1,2,3   160 450 900 2100 6000
Allow axial N 1,2,3   80 225 450 1050 3000
Efficiency η % 1   ≥96%
2 ≥94%
3 ≥90%
life hr 1,2,3   20000
Weight kg 1   0.4 0.9 2.1 6 18
2 0.5 1.1 2.6 8 22
3 0.6 1.3 3.1 9.5
Temperature ºC 1,2 3-100 -25ºC~+90ºC
Lubrication   1,2,3 SYNTHETIC LUBRICATING GREASE
Protection Grade 1,2,3 IP 54
Assembly     Easy  and  simple
Noise( L=1M) dB(A) 1,2 ≤55 ≤58 ≤60 ≤65 ≤70

Please ask us for details. And if you have any customer-made project, you can also feel free to send us by email. Thanks.

Other Related Products

Click here to find what you are looking for:

Company Profile

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetarygearbox

Planetary Gearbox

This article will explore the design and applications of a planetary gearbox. The reduction ratio of a planetary gearbox is dependent on the number of teeth in the gears. The ratios of planetary gearboxes are usually lower than those of conventional mechanical transmissions, which are mainly used to drive engines and generators. They are often the best choice for heavy-duty applications. The following are some of the advantages of planetary gearboxes.

planetary gearboxes

Planetary gearboxes work on a similar principle to solar systems. They rotate around a center gear called the sun gear, and two or more outer gears, called planet gears, are connected by a carrier. These gears then drive an output shaft. The arrangement of planet gears is similar to that of the Milky Way’s ring of planets. This arrangement produces the best torque density and stiffness for a gearbox.
As a compact alternative to normal pinion-and-gear reducers, planetary gearing offers many advantages. These characteristics make planetary gearing ideal for a variety of applications, including compactness and low weight. The efficiency of planetary gearing is enhanced by the fact that ninety percent of the input energy is transferred to the output. The gearboxes also have low noise and high torque density. Additionally, their design offers better load distribution, which contributes to a longer service life.
Planetary gears require lubrication. Because they have a smaller footprint than conventional gears, they dissipate heat well. In fact, lubrication can even lower vibration and noise. It’s also important to keep the gears properly lubricated to prevent the wear and tear that comes with use. The lubrication in planetary gears also helps keep them operating properly and reduces wear and tear on the gears.
A planetary gearbox uses multiple planetary parts to achieve the reduction goal. Each gear has an output shaft and a sun gear located in the center. The ring gear is fixed to the machine, while the sun gear is attached to a clamping system. The outer gears are connected to the carrier, and each planetary gear is held together by rings. This arrangement allows the planetary gear to be symmetrical with respect to the input shaft.
The gear ratio of a planetary gearbox is defined by the sun gear’s number of teeth. As the sun gear gets smaller, the ratio of the gear will increase. The ratio range of planetary gears ranges from 3:1 to ten to one. Eventually, however, the sun gear becomes too small, and the torque will fall significantly. The higher the ratio, the less torque the gears can transmit. So, planetary gears are often referred to as “planetary” gears.
planetarygearbox

Their design

The basic design of a Planetary Gearbox is quite simple. It consists of three interconnecting links, each of which has its own torque. The ring gear is fixed to the frame 0 at O, and the other two are fixed to each other at A and B. The ring gear, meanwhile, is attached to the planet arm 3 at O. All three parts are connected by joints. A free-body diagram is shown in Figure 9.
During the development process, the design team will divide the power to each individual planet into its respective power paths. This distribution will be based on the meshing condition of all gears in the system. Then, the design team will proceed to determine the loads on individual gear meshes. Using this method, it is possible to determine the loads on individual gear meshes and the shape of ring gear housing.
Planetary Gearboxes are made of three gear types. The sun gear is the center, which is connected to the other two gears by an internal tooth ring gear. The planet pinions are arranged in a carrier assembly that sets their spacing. The carrier also incorporates an output shaft. The three components in a Planetary Gearbox mesh with each other, and they rotate together as one. Depending on the application, they may rotate at different speeds or at different times.
The planetary gearbox’s design is unique. In a planetary gearbox, the input gear rotates around the central gear, while the outer gears are arranged around the sun gear. In addition, the ring gear holds the structure together. A carrier connects the outer gears to the output shaft. Ultimately, this gear system transmits high torque. This type of gearbox is ideal for high-speed operations.
The basic design of a Planetary Gearbox consists of multiple contacts that must mesh with each other. A single planet has an integer number of teeth, while the ring has a non-integer number. The teeth of the planets must mesh with each other, as well as the sun. The tooth counts, as well as the planet spacing, play a role in the design. A planetary gearbox must have an integer number of teeth to function properly.

Applications

In addition to the above-mentioned applications, planetary gearing is also used in machine tools, plastic machinery, derrick and dock cranes, and material handling equipments. Further, its application is found in dredging equipment, road-making machinery, sugar crystallizers, and mill drives. While its versatility and efficiency makes it a desirable choice for many industries, its complicated structure and construction make it a complex component.
Among the many benefits of using a planetary gearbox, the ability to transmit greater torque into a controlled space makes it a popular choice for many industries. Moreover, adding additional planet gears increases the torque density. This makes planetary gears suitable for applications requiring high torque. They are also used in electric screwdrivers and turbine engines. However, they are not used in everything. Some of the more common applications are discussed below:
One of the most important features of planetary gearboxes is their compact footprint. They are able to transmit torque while at the same time reducing noise and vibration. In addition to this, they are able to achieve a high speed without sacrificing high-quality performance. The compact footprint of these gears also allows them to be used in high-speed applications. In some cases, a planetary gearbox has sliding sections. Some of these sections are lubricated with oil, while others may require a synthetic gel. Despite these unique features, planetary gears have become common in many industries.
Planetary gears are composed of three components. The sun gear is the input gear, whereas the planet gears are the output gears. They are connected by a carrier. The carrier connects the input shaft with the output shaft. A planetary gearbox can be designed for various requirements, and the type you use will depend on the needs of your application. Its design and performance must meet your application’s needs.
The ratios of planetary gears vary depending on the number of planets. The smaller the sun gear, the greater the ratio. When planetary stages are used alone, the ratio range is 3:1 to 10:1. Higher ratios can be obtained by connecting several planetary stages together in the same ring gear. This method is known as a multi-stage gearbox. However, it can only be used in large gearboxes.
planetarygearbox

Maintenance

The main component of a planetary gearbox is the planetary gear. It requires regular maintenance and cleaning to remain in top shape. Demand for a longer life span protects all other components of the gearbox. This article will discuss the maintenance and cleaning procedures for planetary gears. After reading this article, you should know how to maintain your planetary gearbox properly. Hopefully, you can enjoy a longer life with your gearbox.
Firstly, it is important to know how to properly lubricate a planetary gearbox. The lubricant is essential as gears that operate at high speeds are subject to high levels of heat and friction. The housing of the planetary gearbox should be constructed to allow the heat to dissipate. The recommended oil is synthetic, and it should be filled between 30 and 50 percent. The lubricant should be changed at least every six months or as needed.
While it may seem unnecessary to replace a planetary gearbox, regular servicing will help it last a long time. A regular inspection will identify a problem and the appropriate repairs are needed. Once the planetary gearbox is full, it will plug with gear oil. To avoid this problem, consider getting the unit repaired instead of replacing the gearbox. This can save you a lot of money over a new planetary gearbox.
Proper lubrication is essential for a long life of your planetary gearbox. Oil change frequency should be based on oil temperature and operating speed. Oil at higher temperatures should be changed more frequently because it loses its molecular structure and cannot form a protective film. After this, oil filter maintenance should be performed every few months. Lastly, the gearbox oil needs to be checked regularly and replaced when necessary.

China manufacturer ZD 80mm Low Backlash High Precision Planetary Gear Box For Servo Motor   cyclo planetary gearboxChina manufacturer ZD 80mm Low Backlash High Precision Planetary Gear Box For Servo Motor   cyclo planetary gearbox
editor by CX 2023-10-25

China Standard OEM Excavator TM02 Planetary Travel Gear Box gearbox drive shaft

Product Description

OEM Excavator TM02 Planetary Travel Gear Box

Product Detail:

Travel Device is installed with Dual Displacement Axial Piston Motor and Travel Reduction Gearbox. Built-in Relief Valve, Anti-reverse Valve, Parking Brake and Dual speed switching device. Available for wide scope of ratios, high density, high efficiency, high reliability, small volume, smooth transmission, low noise as well as multi-level security protection and long serving life. Applicable to hydraulic track drive Final Drives.

Specification Of Product:

Item TM02
Part Name Travel Device
Input Flow(L/min) 20
Motor Displacement(ml/r) 7/12
Gear Ratio 1/37
Output Torque(N.m) 1500
Output Speed(r/min) 75/45
Frame Holes 8
Sprocket Holes 9
Application 1-1.8 T

 

Application: Motor, Machinery
Function: Change Drive Direction, Speed Reduction
Layout: Three-Ring
Hardness: Soft Tooth Surface
Installation: Torque Arm Type
Step: Double-Step
Customization:
Available

|

Customized Request

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a crucial role in enhancing the efficiency and performance of conveyor belts in mining operations:

  • High Torque Transmission: Planetary gearboxes are capable of transmitting high torque with minimal backlash. This feature ensures that the gearbox efficiently handles the substantial load requirements of conveyor belts used in mining, preventing slippage and ensuring reliable material transportation.
  • Compact Design: The compact size of planetary gearboxes allows them to be integrated seamlessly into conveyor systems, optimizing space utilization and allowing for efficient equipment layout in mining environments.
  • Variable Speed Control: Planetary gearboxes provide precise speed control and can accommodate various speed requirements of conveyor belts. This versatility allows operators to adjust the conveyor speed to match specific material handling needs.
  • High Efficiency: The inherent design of planetary gearboxes minimizes energy losses due to efficient power transmission. This efficiency translates into reduced energy consumption and operational costs over the lifetime of the conveyor system.
  • Reliability and Durability: Planetary gearboxes are engineered to withstand demanding conditions often encountered in mining environments, including shock loads, abrasive materials, and harsh weather. Their robust construction ensures reliable operation and minimal downtime.
  • Low Maintenance: The durability of planetary gearboxes leads to reduced maintenance requirements. This benefit is particularly valuable in mining operations where minimizing downtime is essential for maintaining high productivity levels.
  • Customizability: Planetary gearboxes can be tailored to suit specific conveyor system requirements, including gear ratios, torque ratings, and mounting options. This flexibility allows for optimized system design and performance.

By effectively transmitting power, providing accurate speed control, and offering a compact and robust design, planetary gearboxes significantly enhance the efficiency and reliability of conveyor belts in mining operations. Their ability to handle high loads, operate with low maintenance needs, and withstand harsh conditions contributes to improved productivity and reduced operational costs.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China Standard OEM Excavator TM02 Planetary Travel Gear Box   gearbox drive shaft	China Standard OEM Excavator TM02 Planetary Travel Gear Box   gearbox drive shaft
editor by CX 2023-10-21

China Best Sales Cycloidal Gearbox Cyclo Gear Best Price Manufacture Box Drive Motor Speed Reducer Gearboxes Planetary CZPT Power Industrial Transmissio Cycloidal Gearbox sequential gearbox

Product Description

                              SC Transmission Cycloidal gearbox Cyclo Drivecyc lo gear box drive motor speed reducer gearboxes planetary CZPT power industrial transmission best price manufacture Cycloidal gearbox

Product Description

 

Cyclo Drive are unsurpassed where drive technology is concerned.  The Cyclo drive is superior to traditional gear mechanisms, since it only operates with rolling force and is not exposed to shear forces.  By comparison with gears with contact loads, Cyclo drives are more resistant and can absorb extreme shock loads by means of uniform load distribution over the power transmitting components.  Cyclo drives and Cyclo drive geared motors are characterized by their reliability, long service life and outstanding efficiency, even under difficult conditions.

Applications:Conveyor systems,Food and sugar industry,Mixers and agitators,Metalworking machines,Water treatment plants,Recycling plants,Poultry Processing Equipment,Sawmills and woodworking machines,Rolling mills,Construction machinery,Paper industry

Cycloidal Reducer 
Power range:0.12-90KW
Transmission ration range:7-650000
Output torque(Kn.m):top to 30
 

Product Parameters

 

 

Company Profile

FAQ

 

Shipping

Application: Motor, Machinery, Agricultural Machinery
Gear Shape: Bevel Gear
Step: Single-Step
Type: Worm Reducer
Motor: Can Be Matched with The Motor
Ratio: 7-650000
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a significant role in enhancing the efficiency of conveyor belts used in mining operations:

  • High Torque Capability: Planetary gearboxes are capable of providing high torque output, which is essential for handling heavy loads of mined materials on conveyor belts.
  • Compact Design: The compact nature of planetary gearboxes allows them to be integrated into tight spaces, making them suitable for conveyor systems where space is limited.
  • Multi-Stage Design: Planetary gearboxes can achieve high gear ratios through multiple stages of gear reduction. This allows for efficient power transmission from the motor to the conveyor, reducing the load on the motor and increasing overall efficiency.
  • Load Distribution: Planetary gearboxes distribute the load across multiple planet gears, which helps in minimizing wear and ensuring longer lifespan of the gearbox.
  • Variable Speed Control: By using planetary gearboxes with variable speed capabilities, conveyor belts can be operated at different speeds to match the processing requirements, optimizing material handling and energy consumption.
  • Overload Protection: Some planetary gearboxes feature built-in overload protection mechanisms, safeguarding the gearbox and conveyor system from damage due to sudden increases in load.

Overall, planetary gearboxes enhance the efficiency, reliability, and performance of conveyor belts in mining operations by providing the necessary torque, compact design, and precise control needed to transport mined materials effectively.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes

Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:

1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.

2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.

3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.

4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.

5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.

6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.

7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.

8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.

By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.

China Best Sales Cycloidal Gearbox Cyclo Gear Best Price Manufacture Box Drive Motor Speed Reducer Gearboxes Planetary CZPT Power Industrial Transmissio Cycloidal Gearbox   sequential gearbox	China Best Sales Cycloidal Gearbox Cyclo Gear Best Price Manufacture Box Drive Motor Speed Reducer Gearboxes Planetary CZPT Power Industrial Transmissio Cycloidal Gearbox   sequential gearbox
editor by CX 2023-10-18

China supplier OEM Planetary Gear Box High Precision Ab Series Helical Gear Planetary Gearbox with Great quality

Product Description

Product Description

 

Detailed Photos

 

Product Parameters

 

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

features:

AB-series reducer features:

1. Helical gear design The reduction mechanism adopts the helical gear design, and its tooth shape meshing rate is more than twice that of the general spur gear, and has the characteristics of smooth operation, low noise, high output torque and low backlash

2. Collet type locking mechanism The connection between the input end and the motor adopts a collet-type locking mechanism and undergoes dynamic balance analysis to ensure the concentricity of the joint interface and zero-backlash power transmission at high input speeds
3. Modular design of motor connection board The unique modular design of the motor connecting plate and shaft is suitable for any brand and type of servo motor;
4. Efficient surface treatment technology The surface of the gearbox is treated with electroless nickel, and the connecting plate of the motor is treated with black anodic treatment to improve the environmental tolerance and corrosion resistance
5. One-piece gearbox body The gearbox and the inner ring gear adopt an integrated design, with compact structure, high precision and large output torque

 

6. Accurate concentricity of gear bar The sun gear made of the whole gear bar has strong rigidity and accurate concentricity
7. Solid, Single piece sun gear construction obtains precise concentricity with increased strength and rigidity. 8.Precision taper roller bearing support to increases radial and axial loading capacity.

 

Applications

 

Certifications

Packaging & Shipping

 

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Factors to Consider When Selecting a Planetary Gearbox

Choosing the right planetary gearbox for a specific application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:

  • Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
  • Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
  • Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
  • Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
  • Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
  • Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
  • Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
  • Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
  • Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
  • Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
  • Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.

By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.

China supplier OEM Planetary Gear Box High Precision Ab Series Helical Gear Planetary Gearbox   with Great quality China supplier OEM Planetary Gear Box High Precision Ab Series Helical Gear Planetary Gearbox   with Great quality
editor by CX 2023-09-26

China best Cycloidal Planetary Gear Box CZPT Carton Gpb090 Nmrv Robotic Arm with Great quality

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Taibang planetary gear motor is high energy efficiency,low noise,long service life,which is widely used in various industry.

Model Instruction
 

GE 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

Main Technical Performance
 

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

 

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

Application: Machinery, Agricultural Machinery, Automatic Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Smooth and Controlled Movement in Industrial Robots with Planetary Gearboxes

Planetary gearboxes play a crucial role in ensuring smooth and controlled movement in industrial robots, enhancing their precision and performance:

Reduced Backlash: Planetary gearboxes are designed to minimize backlash, which is the amount of play or free movement between gear teeth. This reduction in backlash results in precise and accurate motion control, allowing industrial robots to achieve precise positioning and repeatability.

High Gear Reduction Ratios: Planetary gearboxes offer high gear reduction ratios, allowing the robot’s motor to output higher torque while maintaining lower speed. This capability enables robots to handle heavy loads and perform tasks that require fine adjustments and delicate movements.

Compact Design: The compact and lightweight design of planetary gearboxes allows for their integration into the limited space of industrial robot joints and actuators. This compactness is crucial for maintaining the overall efficiency and agility of the robot’s movements.

Multi-Speed Capabilities: Planetary gearboxes can be designed with multiple gear stages, allowing industrial robots to operate at different speeds as needed for various tasks. This flexibility in speed selection enhances the robot’s versatility in performing tasks of varying complexities.

High Efficiency: Planetary gearboxes are known for their high efficiency, which translates to minimal energy loss during gear transmission. This efficiency ensures that the robot’s movements are smooth and consistent while optimizing energy consumption.

Torque Distribution: The arrangement of planetary gears allows for efficient distribution of torque across multiple gear stages. This feature ensures that the robot’s joints and actuators receive the appropriate amount of torque for controlled movement, even when handling varying loads.

Seamless Integration: Planetary gearboxes are designed to be easily integrated with servo motors and other robotic components. This seamless integration ensures that the gearbox’s performance is harmoniously aligned with the overall robotic system.

Precision and Accuracy: By providing precise gear reduction and motion control, planetary gearboxes enable industrial robots to perform tasks that demand high levels of precision and accuracy, such as assembly, welding, painting, and intricate material handling.

Reduced Vibrations: The reduced backlash and smooth gear engagement in planetary gearboxes contribute to minimized vibrations during robot operation. This results in quieter and more stable robot movements, further enhancing their performance and user experience.

Dynamic Load Handling: Planetary gearboxes can handle dynamic loads that may change during robot operation. Their ability to manage varying loads while maintaining controlled movement is essential for safe and reliable robot performance.

In summary, planetary gearboxes ensure smooth and controlled movement in industrial robots by minimizing backlash, offering high gear reduction ratios, providing a compact design, enabling multi-speed capabilities, maintaining high efficiency, distributing torque effectively, seamlessly integrating with robotic systems, enhancing precision and accuracy, reducing vibrations, and enabling dynamic load handling. These features collectively contribute to the precise and optimized motion of industrial robots in various applications and industries.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

China best Cycloidal Planetary Gear Box CZPT Carton Gpb090 Nmrv Robotic Arm   with Great quality China best Cycloidal Planetary Gear Box CZPT Carton Gpb090 Nmrv Robotic Arm   with Great quality
editor by CX 2023-09-25