Tag Archives: hydraulic connection

China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection differential gearbox

Product Description

Product Description GFT series / CZPT 701 / CZPT CTM1016 / CZPT riduttorr RRTD180

ZHangZhoug New CZPT Hydraulic Co., Ltd. is a professional manufacturer of planetary reducers/gearbox/final drive. At present,we developed tens of thousands specifications of the planetary reducer/gearbox, travel drive,swing drive and winch drive.The ratio range is 3.3~9000, and the output torque range is 500~1200000N.m. The installation, dimensions and performance parameters of the final drive are exactly the same as famous European brands, which can be perfectly replaced and interchanged.

Details as follows:
BONFIGLIOLI (300 series, 700C series, 700T series, 600W series)
BREVINI (EM, ED, ET, EQ, EC, PD, PDA, CTD, CTU, SL types)
DINAMIC OIL (types RE, GB, RA, GBA)
REGGIANA RIDUTTORI (RR, RA type)
COMER (PG, PGA, PGR, PGW types)
REXROTH (GFT, GFT-W, GFB type)
ROSSI (R2E, R3E, R4E, RCE, RC2E, RC3E, MR2E, MR3E, MR4E, MRCE, MRC2E, MRC3E)
ZOLLERN (ZHP3.13, ZHP3.15, ZHP3.19, ZHP3.20, ZHP3.22, ZHP3.24, ZHP3.25, ZHP3.26, ZHP3.27, ZHP3.29, ZHP3.31, ZHP3.32)
FAIRFIELD, AUBURN GEAR, OMNI GEAR, O&K, etc. Therefore,our planetary reducer/gearbox can be used to replace the gearboxes of these brands.

Bonfiglioli Dinamic oil Brevini RR
300 RE110 EM1571 ED1571 ET2571 RR65/105
301 RE210 EM1030 ED1030 ET2030 RR110/210
303 RE240 ED2030 ET3030 EQ4030 RR310
304 RE310 ED2040 ET3040 EQ4040 RR510
305 RE510 EM1045 ED2045 ET3045 RR510/710
306 RE810 EM1046 ED2046 ET3046 RR810
EM1065 ED2065 ET3065
307 RE1571 EM1090 ED2090 ET3090 RR1571
RE1520
309 RE1520 ED2150 ET3150 EQ4150 RR1700
310 RE2520 ED2250 ET3250 EQ4250 RR2700
ED2320 ET3320 EQ4320
311 RE3510 SL3001,SL3002,SL3003,SL3004 RR4000
313 RE3511,RE3512,RE3513,RE3514 SL4001,SL4002,SL4003,SL4004 RR5000/RR5200
315 RE6520 SL6001,SL6002,SL6003,SL6004   SL8501,SL8502,SL8503 RR6500
316 GB11000 SL12001,SL12002,SL12003,SL12004 RR8000
317 GB18000,GB21000, SL18001,SL18002,SL18003 RR10000
318 GB26000 SL25001,SL25002,SL25003,SL25004    RR15000
319 GB53000,GB53000 SL35001,SL35002,SL35003,SL35004    RR20000
320      
321 GB61000    

 

300 Series Planetary Geabox Parameter

 

  Model    

    Rated Output Torque  

(N.m)

Max.Power

(KW)

Max.Input Speed

(rpm)

Ratio
   
301 1750 30 3000 3.4-2700 7-700
303 2500 40 3000 3.6-2800 9-800
305 5000 60 3000 3.6-2800 9-800
306 8500 75 2500 3.6-2900 9-800
307 12500 100 2500 3.4-2400 13-700
309 18500 130

2500

3.4-2400 13-700
310 25000 150 2000 4-2500 40-900
311 35000 180 2000 4-2100 18-800
313 50000 200 2000 4-2200 18-800
315 80000 250 1500 4-1800 70-900
316 105000 270 1500 4.4-1200 50-600
317 150000 300 1000 4-1900 70-900
318 200000 340 1000 4.4-1100 200-700
319 30000 380 500 4.8-1400 300-800

Office Environment

Our Equipment
Accessories for 300 Series

Certificate

Contact Us

How to contact us?
 Nancy Zhang

Foreign Sales&Marketing Manager
HangZhou Kemer Engineering Machinery Co.,LTD
 

After-sales Service: on Line
Warranty: 1 Year, 1 Year
Type: Drive, Motor
Application: Industrial Equipment
Certification: ISO9001: 2000
Condition: New
Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining a compact form factor poses several challenges due to the intricate arrangement of gears and the need to balance various factors:

Space Constraints: Increasing the gear ratio typically requires adding more planetary stages, resulting in additional gears and components. However, limited available space can make it challenging to fit these additional components without compromising the compactness of the gearbox.

Efficiency: As the number of planetary stages increases to achieve higher gear ratios, there can be a trade-off in terms of efficiency. Additional gear meshings and friction losses can lead to decreased overall efficiency, impacting the gearbox’s performance.

Load Distribution: The distribution of loads across multiple stages becomes critical when designing high gear ratio planetary gearboxes. Proper load distribution ensures that each stage shares the load proportionally, preventing premature wear and ensuring reliable operation.

Bearing Arrangement: Accommodating multiple stages of planetary gears requires an effective bearing arrangement to support the rotating components. Improper bearing selection or arrangement can lead to increased friction, reduced efficiency, and potential failures.

Manufacturing Tolerances: Achieving high gear ratios demands tight manufacturing tolerances to ensure accurate gear tooth profiles and precise gear meshing. Any deviations can result in noise, vibration, and reduced performance.

Lubrication: Adequate lubrication becomes crucial in maintaining smooth operation and reducing friction as gear ratios increase. However, proper lubrication distribution across multiple stages can be challenging, impacting efficiency and longevity.

Noise and Vibration: The complexity of high gear ratio planetary gearboxes can lead to increased noise and vibration levels due to the higher number of gear meshing interactions. Managing noise and vibration becomes essential for ensuring acceptable performance and user comfort.

To address these challenges, engineers employ advanced design techniques, high-precision manufacturing processes, specialized materials, innovative bearing arrangements, and optimized lubrication strategies. Achieving the right balance between high gear ratios and compactness involves careful consideration of these factors to ensure the gearbox’s reliability, efficiency, and performance.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Factors to Consider When Selecting a Planetary Gearbox

Choosing the right planetary gearbox for a specific application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:

  • Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
  • Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
  • Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
  • Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
  • Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
  • Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
  • Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
  • Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
  • Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
  • Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
  • Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.

By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.

China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection   differential gearbox	China Standard Planetary Gear Box Transmission Gearmotors with Hydraulic Motor Connection   differential gearbox
editor by CX 2023-10-26