Product Description
helical worm planetary bevel gearbox transmission motor mixer reducer gearboxes China manufacturer
Application of helical gearbox
Helical gearboxes are used in a wide variety of applications, including:
- Automotive: Helical gearboxes are used in automotive transmissions to transmit power from the engine to the drive wheels. They are also used in other automotive applications, such as power steering pumps and air conditioning compressors.
- Machine tools: Helical gearboxes are used in machine tools such as lathes, milling machines, and drills to transmit power from the motor to the cutting tool. They are also used in other machine tool applications, such as conveyors and robotic arms.
- Construction equipment: Helical gearboxes are used in construction equipment such as excavators, loaders, and cranes to transmit power from the engine to the various moving parts. They are also used in other construction equipment applications, such as concrete mixers and pumps.
- Aerospace: Helical gearboxes are used in aerospace applications such as aircraft landing gear and satellite control systems. They are also used in other aerospace applications, such as jet engines and rocket motors.
- Other applications: Helical gearboxes are also used in a variety of other applications, such as wind turbines, conveyor belts, and mixers.
Helical gearboxes are chosen for these applications because they offer a number of advantages over other types of gearboxes, including:
- Smoother operation: Helical gears mesh more smoothly than other types of gears, which reduces vibration and noise.
- Higher efficiency: Helical gears are more efficient than other types of gears, which means that they can transmit more power with less loss.
- Longer life: Helical gears are more durable than other types of gears, which means that they can last longer under heavy loads.
However, helical gearboxes can be more expensive than other types of gearboxes, and they can be more difficult to manufacture.
Here are some of the advantages of using helical gears:
- Smoother operation: Helical gears mesh more smoothly than other types of gears, which reduces vibration and noise.
- Higher efficiency: Helical gears are more efficient than other types of gears, which means that they can transmit more power with less loss.
- Longer life: Helical gears are more durable than other types of gears, which means that they can last longer under heavy loads.
Here are some of the disadvantages of using helical gears:
- More expensive: Helical gears can be more expensive than other types of gears.
- More difficult to manufacture: Helical gears can be more difficult to manufacture than other types of gears.
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car |
---|---|
Function: | Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
---|
Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes
Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:
- Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
- Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
- Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
- Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
- Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.
To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.
Enhancing Wind Turbine System Performance with Planetary Gearboxes
Planetary gearboxes play a crucial role in enhancing the performance and efficiency of wind turbine systems. Here’s how they contribute:
1. Speed Conversion: Wind turbines operate optimally at specific rotational speeds to generate electricity efficiently. Planetary gearboxes allow for speed conversion between the low rotational speed of the wind turbine rotor and the higher speed required by the generator. This speed adaptation ensures the generator operates at its peak efficiency, resulting in maximum power generation.
2. Torque Amplification: Wind turbine blades may experience varying wind speeds, which result in fluctuating torque loads. Planetary gearboxes can amplify the torque generated by the rotor blades before transmitting it to the generator. This torque multiplication helps maintain stable generator operation even during wind speed variations, improving overall energy production.
3. Compact Design: Wind turbines are often installed in locations with limited space, such as offshore platforms or densely populated areas. Planetary gearboxes offer a compact design, allowing for efficient power transmission within a small footprint. This compactness is vital for accommodating gearboxes in the limited nacelle space of the wind turbine.
4. Load Distribution: Wind turbines are subjected to varying wind conditions, including gusts and turbulence. Planetary gearboxes distribute the load evenly among multiple planet gears, reducing stress and wear on individual components. This balanced load distribution improves gearbox durability and reliability.
5. Efficiency Optimization: Planetary gearboxes are known for their high efficiency due to their parallel axis arrangement and multiple gear stages. The efficient power transmission minimizes energy losses within the gearbox, resulting in more power being converted from wind energy to electricity.
6. Maintenance and Reliability: The robust construction of planetary gearboxes contributes to their durability and longevity. Wind turbines often operate in challenging environments, and the reliability of the gearbox is crucial for minimizing maintenance and downtime. Planetary gearboxes’ low maintenance requirements and ability to handle varying loads contribute to the overall reliability of wind turbine systems.
7. Variable Speed Control: Some wind turbines use variable-speed operation to optimize power generation across a range of wind speeds. Planetary gearboxes can facilitate variable speed control by adjusting the gear ratio to match the wind conditions. This flexibility improves energy capture and reduces stress on turbine components.
8. Adaptation to Turbine Size: Planetary gearboxes are available in various sizes and gear ratios, making them adaptable to different turbine sizes and power outputs. This versatility allows wind turbine manufacturers to select gearboxes that align with specific project requirements.
Overall, planetary gearboxes play a pivotal role in optimizing the performance, efficiency, and reliability of wind turbine systems. Their ability to convert speed, amplify torque, and distribute loads makes them a key component in harnessing wind energy for clean and sustainable electricity generation.
Design Principles and Functions of Planetary Gearboxes
Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:
- Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
- Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
- Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
- Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
- Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
- Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
- Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
- Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
- Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.
Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.
editor by CX 2023-09-11
China Professional CZPT 3V Gear Motor Micro Planetary Gearboxes for Educational Robot, Door Lock planetary gearbox
Product Description
Product Parameters
Model No.: KM-20A180-144-1225
Size details:
- Motor Diameter: φ20.4mm
- Motor housing length: 32.1mm
- Shaft length: customization
Specifications:
- Rated voltage: DC 6V
- Direction of rotation: CW/CCW
- No load speed: 125rpm
- No load current: 0.145A
- Rated torque: 820g.cm
- Rated speed: 115rpm
- Rated current: 0.37A
All technical data can custom made for different application.
Other Customized items:
- DC motor, gearbox motor, vibration motor, automotive motor.
- Accessories offered like encoder, gear, worm, wire, connector.
- Ball-bearing or Oil-impregnated bearing.
- Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
- Metal end cap or plastic end cap.
- Precious metal brush/ carbon brush.
Detailed Photos
Application
Certifications
Packaging & Shipping
Company Profile
Our Advantages
FAQ
1.What kind of motor do you supply?
Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
2.What’s the lead time for samples or mass production?
Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
3.Could you mind sending the quotation for this motor?
For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?
We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.
5.Are your motors certificated with UL, CB Tüv, CE?
All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Compound |
Function: | Control, Driving |
Casing Protection: | Open Type |
Number of Poles: | 2 |
Customization: |
Available
| Customized Request |
---|
Factors to Consider When Selecting a Planetary Gearbox
Choosing the right planetary gearbox for a specif
Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment
Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:
High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.
Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.
Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.
Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.
Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.
Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.
Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.
ic application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:
- Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
- Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
- Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
- Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
- Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
- Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
- Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
- Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
- Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
- Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
- Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.
By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.
editor by CX 2023-08-22
China supplier RV Type Worm Gearboxes with Motor planetary gearbox efficiency
Product Description
Parameters:
Models | Rated Power | Rated Ratio | Input Hole Dia. | Input Shaft Dia. | Output Hole Dia. | Output Shaft Dia. | Center Distance |
RV571 | 0.06KW~0.12KW | 5~60 | Φ9 | Φ9 | Φ11 | Φ11 | 25mm |
RV030 | 0.06KW~0.25KW | 5~80 | Φ9(Φ11) | Φ9 | Φ14 | Φ14 | 30mm |
RV040 | 0.09KW~0.55KW | 5~100 | Φ9(Φ11,Φ14) | Φ11 | Φ18(Φ19) | Φ18 | 40mm |
RV050 | 0.12KW~1.5KW | 5~100 | Φ11(Φ14,Φ19) | Φ14 | Φ25(Φ24) | Φ25 | 50mm |
RV063 | 0.18KW~2.2KW | 7.5~100 | Φ14(Φ19,Φ24) | Φ19 | Φ25(Φ28) | Φ25 | 63mm |
RV075 | 0.25KW~4.0KW | 7.5~100 | Φ14(Φ19,Φ24,Φ28) | Φ24 | Φ28(Φ35) | Φ28 | 75mm |
RV090 | 0.37KW~4.0KW | 7.5~100 | Φ19(Φ24,Φ28) | Φ24 | Φ35(Φ38) | Φ35 | 90mm |
RV110 | 0.55KW~7.5KW | 7.5~100 | Φ19(Φ24,Φ28,Φ38) | Φ28 | Φ42 | Φ42 | 110mm |
RV130 | 0.75KW~7.5KW | 7.5~100 | Φ24(Φ28,Φ38) | Φ30 | Φ45 | Φ45 | 130mm |
RV150 | 2.2KW~15KW | 7.5~100 | Φ28(Φ38,Φ42) | Φ35 | Φ50 | Φ50 | 150mm |
Product Description
Components:
1. Housing: Die-cast Aluminium Alloy Gearbox (RV571~RV090)Cast Iron Gearbox (RV110~RV150)
2. Worm Wheel: Wearable Tin Bronze Alloy, Aluminum Bronze Alloy
3. Worm Shaft: 20Cr Steel, carburizing, quenching, grinding, surface hardness 56-62HRC, 0.3-0.5mm remaining carburized layer after precise grinding
4. Input Configurations:
Equipped with Electric Motors (AC Motor, Brake Motor, DC Motor, Servo Motor)
IEC-normalized Motor Flange
Solid Shaft Input
Worm Shaft Tail Extension Input
5. Output Configurations:
Keyed Hollow Shaft Output
Hollow Shaft with Output Flange
Plug-in CZPT Shaft Output
6. Spare Parts: Worm Shaft Tail Extension, Single Output Shaft, Double Output Shaft, Output Flange, Torque Arm, Dust Cover
7. Gearbox Painting:
Aluminium Alloy Gearbox:
After Shot Blasting, Anticorrosion Treatment and Phosphating, Paint with the Color of RAL 5571 Gentian Blue or RAL 7035 Light Grey
Cast Iron Gearbox:
After Painting with Red Antirust Paint, Paint with the Color of RAL 5571 Gentian Blue
Models:
Hollow Shaft Input with IEC-normalized Motor Flange
RV571~RV150
Solid Shaft Input
RV571~RV150
Features:
1. Quality aluminum alloy gear box, light weight and not rust
2. 2 optional worm wheel materials: Tin bronze or aluminum bronze alloy
3. Standard parts and very flexible for shaft configurations and motor flange interface
4. Several optional mounting options
5. Low noise, High efficiency in heat dissipation
Company Introduction:
ZHangZhoug CZPT Electrical Machinery Co., Ltd. is a modern enterprise specializing in producing all kinds of small and medium motors. Its products mainly include Y, Y2 and IE2 series three-phase asynchronous motors, MS aluminum shell motors, YD series multi-speed motors, CZPT series electromagnetic variable-speed motors, YVP variable-frequency and variable-speed motors, YEJ electromagnetic braking three-phase asynchronous motors, YC/YCL and YL single-phase series motors, JY single-phase asynchronous motors and MY/ML aluminum shell single-phase asynchronous motors. The company is located in Lianshu Industrial Zone, HangZhou, next to National Highway 104, Xihu (West Lake) Dis. Airport and Xihu (West Lake) Dis. Port, enjoying very convenient sea, land and air transportation. Since its inception, the company consistently adheres to the policy of “Develop Technology to Expand Market, Enhance Quality to Create Brand, Strictly Manage to Increase Benefit, and Based on Integrity to Be World-renowned”, and insists on first-class quality to create first-class enterprise.
Factory Advantages
1 . 15 years history
2. Competitive Price
3. Guaranteed Quality
4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days
5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.
6. High efficiency
7. Low noise
8. Long life
9. Power saving
10. Slight vibration
11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;
12. Professional Service
13. Warranty: 12 months from date of delivery
14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on
15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !
Application: | Motor, Machinery |
---|---|
Hardness: | Soft Tooth Surface |
Installation: | 90 Degree |
Layout: | Coaxial |
Gear Shape: | Conical – Cylindrical Gear |
Step: | Stepless |
Samples: |
US$ 500/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Types, Applications, and Lubrication of Planetary Gearboxes
A Planetary Gearbox is a device that can be used in a variety of applications. Their reduction ratios depend on the number of teeth in each gear. In this article, we will discuss the types, applications, and lubrication of planetary gearboxes. Hopefully, this article will be of help to you. If not, you can check out this article and discover more about this fascinating machine. There are many different types of planetary gearboxes.
Applications of planetary gearboxes
The planetary gearbox is a popular option for applications requiring precise positioning. Applications of the planetary gearbox range from plastic machinery to agricultural equipment, from goods & personnel lifts to industrial robotics. Some of the industries that benefit from this type of gearbox include robotics, intra-logistics, robotics for industrial automation, and medical equipment. Increasing automation is also fueling the growth of the industrial planetary gearbox market in APAC.
The compact design of planetary gears makes them excellent for reducing load inertia and maximizing torque. However, some applications require additional lubrication for sustained performance or high speeds. CZPT uses CZPT in its planetary gearboxes. In addition, lubrication prevents gear wear and minimizes noise and vibration. The planetary gearbox is also easy to install, thanks to its low-mass-inertia design.
Another application of the planetary gearbox is in axles and transfer cases. The planetary gear architecture consists of a sun gear, also called the central gear, and a ring-gear with internal teeth that are concentric to the sun gear. The two gears are connected via a carrier, and the output shaft is positioned on the ring-gear carrier. The gearbox can be configured in a variety of ways, depending on the speed-ratio requirements.
The planetary gear train is similar to that of a solar system. It comprises a sun gear and two or more outer gears, ring gear and carrier assembly. In this configuration, the outer gears are connected via a carrier and a ring gear. The planet gears are in constant mesh with each other, and power applied to one of these members will rotate the whole assembly. They are a very efficient choice for many applications.
Types
There are three types of planetary gearboxes, depending on their performance and efficiency. The basic model is highly efficient and transmits up to 97% of power input. Depending on the speed and torque that need to be transmitted, planetary gearboxes are used in many different applications. A planetary gearbox can reduce the speed of a roller or produce a more precise level of movement. Using a planetary gearbox for your printing press, for example, will maximize your gear transmission ratio.
This market research report analyzes the factors influencing the market for Planetary Gearboxes, as well as their sales and revenues. It also highlights industry trends and details the competitive landscape. It also provides a comprehensive analysis of the Planetary Gearbox industry and its drivers and restraints. It provides detailed information on the market size and future growth prospects. The study also includes an extensive discussion of the competitive landscape, identifying the top companies and key market players.
A planetary gearbox is often used to manufacture complicated machines. These gears are usually made of high-quality steel, which makes them extremely durable. Planetary gearboxes can also be used in the production of heavy machine elements. There are many benefits of a planetary gearbox, including its compactness and low mass inertia. The main advantage of a planetary gearbox is its ability to distribute torque. Compared to a normal gearbox, planetary gearboxes can provide torque that is nearly three times higher than its conventional counterpart.
The three main types of planetary gears are the single-stage, compound, and multi-stage. The general concept of a planetary gear is referred to as a compound planetary gear. This means that planetary gears are made up of one of these three basic structures: a meshed-planet structure, a shaft, and a multi-stage structure. This type of gear has multiple stages and is particularly useful for fast-dynamic laser cutting machines.
Design
A planetary gearbox is similar to a car’s transmission. All of its gears must have a certain number of teeth and be spaced equally apart. The teeth of a planet must mesh with the gears of the ring and sun to be functional. The number of teeth needed will depend on the number of planets and their spacing. This equation is a good starting point for designing a gearbox.
The dynamic properties of planetary gears are investigated using a parametric model. The stiffness of the mesh changes as the number of gear tooth pairs in contact varies during the gear rotation. Small disturbances in design realizations cause nonlinear dynamics, which results in noise and vibrations in the gear transmission. A mathematical system describing this process is developed using the basic principles of analytical mechanics. This mathematical model can be used to optimize any planetary gear.
This analysis assumes that the sun gear and planet gears have the same design modulus, which is a fundamental requirement of any mechanical gear. In reality, the ratio of these two gears is 24/16 versus -3/2. This means that a planetary gearbox’s output torque is 41.1 times the input torque. Considering this factor, we can make an accurate estimate of the total torque. The planetary gears are mounted face-to-face and connected to an electric motor.
A planetary gear set has to have a certain number of teeth that are odd or even. One way to overcome this issue is to double the number of teeth on the sun gear and the annulus gear. This will also solve irregularities. Another way to design a planetary gear set is to use the appropriate diametral pitch and module. There are many planetary gear sets available on the market, so it pays to understand the differences.
Lubrication
Lubrication for Planetary Gearboxes is important for the smooth functioning of the gear. Planetary gears are subjected to high levels of friction and heat, so they require regular lubrication. The gear housing is designed to dissipate heat away from the gear, but heat can still enter the gear, which can result in a poor lubrication condition. The best lubrication solution is synthetic oil, and the gear should be refilled with a minimum of 30 percent oil.
When lubricating a planetary gearbox, it is important to note that hydraulic oil is not suitable for planetary gearboxes, which cost over $1500. Hydraulic oil does not have the same viscosity and behavior with temperature fluctuations, making it less effective. The planetary gearbox may also overheat if a hose is not provided for case draining. A case drain hose is essential to prevent this from happening, because hot oil can cause overheating of the gearbox and damage to the gears.
Oil delivery conduits are positioned between each pair of planet gears. Each oil delivery conduit directs fresh oil toward the sun gear and the planet gear. The oil then disperses and exits from the gear train with considerable tangential velocity. The oil is redirected into a collection channel (56). The preferred embodiment uses herringbone gears, which pump oil axially outward into the channels.
The best way to choose the right type of lubrication is to consider its viscosity. Too high a viscosity will prevent the lubricant from flowing properly, which will cause metal-to-metal contact. The oil must also be compatible with the gearbox temperature. A suitable viscosity will increase the efficiency of the gearbox and prevent downtime. A reliable gearbox will ultimately result in higher profits and fewer costs.
Applications
This report examines the Industrial Planetary Gearbox Market and its current trends. It identifies the pre and post-COVID-19 effects of the industry. It outlines the advantages and disadvantages of the industrial planetary gearbox market. The report also explains the diverse financing resources and business models of the market. It includes the key players in the industry. Hence, it is essential to read this report carefully.
The report includes analysis and forecasts of the global market for planetary gearbox. It includes the product introductions, key business factors, regional and type segments, and end-users. It covers the sales and revenue of the market for each application field. The report also includes the regional and country-level market data. It also focuses on the market share of the key companies operating in the industry. It covers the competitive scenario in the global planetary gearbox market.
Another popular application for planetary gearboxes is in the toy industry. It is possible to design toys that look stunning with planetary gear systems. In addition to toys, clock makers also benefit from the planetary arrangement. In addition to producing a good-looking clock, this gearbox can reduce inertia and improve its efficiency. The planetary gearbox is easy to maintain, which makes it a good choice for clock applications.
In addition to traditional gear reductions, planetary gears are also used for 3D printing. Their huge gear ratio makes 3D printing easier. Furthermore, planetary gears are used to drive stepper motors, which turn much faster and produce a desired output. There are numerous industrial uses for planetary gearboxes. This article has explored a few of the most common ones. And don’t forget to explore their uses.
editor by CX 2023-06-05
China high quality RV Type Worm Gearboxes with Motor small planetary gearbox
Product Description
Parameters:
Models | Rated Power | Rated Ratio | Input Hole Dia. | Input Shaft Dia. | Output Hole Dia. | Output Shaft Dia. | Center Distance |
RV571 | 0.06KW~0.12KW | 5~60 | Φ9 | Φ9 | Φ11 | Φ11 | 25mm |
RV030 | 0.06KW~0.25KW | 5~80 | Φ9(Φ11) | Φ9 | Φ14 | Φ14 | 30mm |
RV040 | 0.09KW~0.55KW | 5~100 | Φ9(Φ11,Φ14) | Φ11 | Φ18(Φ19) | Φ18 | 40mm |
RV050 | 0.12KW~1.5KW | 5~100 | Φ11(Φ14,Φ19) | Φ14 | Φ25(Φ24) | Φ25 | 50mm |
RV063 | 0.18KW~2.2KW | 7.5~100 | Φ14(Φ19,Φ24) | Φ19 | Φ25(Φ28) | Φ25 | 63mm |
RV075 | 0.25KW~4.0KW | 7.5~100 | Φ14(Φ19,Φ24,Φ28) | Φ24 | Φ28(Φ35) | Φ28 | 75mm |
RV090 | 0.37KW~4.0KW | 7.5~100 | Φ19(Φ24,Φ28) | Φ24 | Φ35(Φ38) | Φ35 | 90mm |
RV110 | 0.55KW~7.5KW | 7.5~100 | Φ19(Φ24,Φ28,Φ38) | Φ28 | Φ42 | Φ42 | 110mm |
RV130 | 0.75KW~7.5KW | 7.5~100 | Φ24(Φ28,Φ38) | Φ30 | Φ45 | Φ45 | 130mm |
RV150 | 2.2KW~15KW | 7.5~100 | Φ28(Φ38,Φ42) | Φ35 | Φ50 | Φ50 | 150mm |
Product Description
Components:
1. Housing: Die-cast Aluminium Alloy Gearbox (RV571~RV090)Cast Iron Gearbox (RV110~RV150)
2. Worm Wheel: Wearable Tin Bronze Alloy, Aluminum Bronze Alloy
3. Worm Shaft: 20Cr Steel, carburizing, quenching, grinding, surface hardness 56-62HRC, 0.3-0.5mm remaining carburized layer after precise grinding
4. Input Configurations:
Equipped with Electric Motors (AC Motor, Brake Motor, DC Motor, Servo Motor)
IEC-normalized Motor Flange
Solid Shaft Input
Worm Shaft Tail Extension Input
5. Output Configurations:
Keyed Hollow Shaft Output
Hollow Shaft with Output Flange
Plug-in CZPT Shaft Output
6. Spare Parts: Worm Shaft Tail Extension, Single Output Shaft, Double Output Shaft, Output Flange, Torque Arm, Dust Cover
7. Gearbox Painting:
Aluminium Alloy Gearbox:
After Shot Blasting, Anticorrosion Treatment and Phosphating, Paint with the Color of RAL 5571 Gentian Blue or RAL 7035 Light Grey
Cast Iron Gearbox:
After Painting with Red Antirust Paint, Paint with the Color of RAL 5571 Gentian Blue
Models:
Hollow Shaft Input with IEC-normalized Motor Flange
RV571~RV150
Solid Shaft Input
RV571~RV150
Features:
1. Quality aluminum alloy gear box, light weight and not rust
2. 2 optional worm wheel materials: Tin bronze or aluminum bronze alloy
3. Standard parts and very flexible for shaft configurations and motor flange interface
4. Several optional mounting options
5. Low noise, High efficiency in heat dissipation
Company Introduction:
ZHangZhoug CZPT Electrical Machinery Co., Ltd. is a modern enterprise specializing in producing all kinds of small and medium motors. Its products mainly include Y, Y2 and IE2 series three-phase asynchronous motors, MS aluminum shell motors, YD series multi-speed motors, CZPT series electromagnetic variable-speed motors, YVP variable-frequency and variable-speed motors, YEJ electromagnetic braking three-phase asynchronous motors, YC/YCL and YL single-phase series motors, JY single-phase asynchronous motors and MY/ML aluminum shell single-phase asynchronous motors. The company is located in Lianshu Industrial Zone, HangZhou, next to National Highway 104, Xihu (West Lake) Dis. Airport and Xihu (West Lake) Dis. Port, enjoying very convenient sea, land and air transportation. Since its inception, the company consistently adheres to the policy of “Develop Technology to Expand Market, Enhance Quality to Create Brand, Strictly Manage to Increase Benefit, and Based on Integrity to Be World-renowned”, and insists on first-class quality to create first-class enterprise.
Factory Advantages
1 . 15 years history
2. Competitive Price
3. Guaranteed Quality
4. Fast delivery time, Normal models about 15-20days , another not normal models need about 30days
5. 100% testing after each process and final testing before packing ,all raw material is good quality .100% cooper wire, Cold-rolled silicon steel sheet,good quaility shafts ,bearings,stators ,fan,fan covers.and so on.
6. High efficiency
7. Low noise
8. Long life
9. Power saving
10. Slight vibration
11. It is newly designed in conformity with the relevant rules of IEC standards, Strictly and Perfect Management is guaranteed for Production ;
12. Professional Service
13. Warranty: 12 months from date of delivery
14. Main Market: South America, Middle East, Southest Asia, Europe,Africa and so on
15. We have Certification for CE, CCC, ISO9001,High quality and competitive price !
Application: | Motor, Machinery |
---|---|
Hardness: | Soft Tooth Surface |
Installation: | 90 Degree |
Layout: | Coaxial |
Gear Shape: | Conical – Cylindrical Gear |
Step: | Stepless |
Samples: |
US$ 500/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
A Brief Overview of the Spur Gear and the Helical Planetary Gearbox
This article will provide a brief overview of the Spur gear and the helical planetary gearbox. To learn more about the advantages of these gearboxes, read on. Here are a few common uses for planetary gears. A planetary gearbox is used in many vehicles. Its efficiency makes it a popular choice for small engines. Here are three examples. Each has its benefits and drawbacks. Let’s explore each one.
helical planetary gearbox
In terms of price, the CZPT is an entry-level, highly reliable helical planetary gearbox. It is suitable for applications where space, weight, and torque reduction are of high concern. On the other hand, the X-Treme series is suitable for applications requiring high-acceleration, high-axial and radial loads, and high-speed performance. This article will discuss the benefits of each type of planetary gearbox.
A planetary gearbox’s traction-based design is a variation of the stepped-planet design. This variation relies on the compression of the elements of the stepped-planet design. The resulting design avoids restrictive assembly conditions and timing marks. Compared to conventional gearboxes, compound planetary gears have a greater transmission ratio, and they do so with an equal or smaller volume. For example, a 2:1 ratio compound planet would be used with a 50-ton ring gear, and the result would be the same as a 100-ton ring gear, but the planetary disks would be half the diameter.
The Helical planetary gearbox uses three components: an input, an output, and a stationary position. The basic model is highly efficient and transmits 97% of the input power. There are three main types of planetary gearboxes, each focusing on a different performance characteristic. The CZPT basic line is an excellent place to start your research into planetary gearboxes. In addition to its efficiency and versatility, this gearbox has a host of modular features.
The Helical planetary gearbox has multiple advantages. It is versatile, lightweight, and easy to maintain. Its structure combines a sun gear and a planet gear. Its teeth are arranged in a way that they mesh with each other and the sun gear. It can also be used for stationary applications. The sun gear holds the carrier stationary and rotates at the rate of -24/16 and -3/2, depending on the number of teeth on each gear.
A helical planetary gearbox can reduce noise. Its shape is also smaller, reducing the size of the system. The helical gears are generally quieter and run more smoothly. The zero helix-angle gears, in contrast, have smaller sizes and higher torque density. This is a benefit, but the latter also increases the life of the system and is less expensive. So, while the helical planetary gearbox has many advantages, the latter is recommended when space is limited.
The helical gearbox is more efficient than the spur gear, which is limited by its lack of axial load component. The helical gears, on the other hand, generate significant axial forces in the gear mesh. They also exhibit more sliding at the points of tooth contact, adding friction forces. As such, the Helical planetary gearbox is the preferred choice in servo applications. If you’re looking for a gearbox to reduce noise and improve efficiency, Helical planetary gearboxes are the right choice.
The main differences between the two types of planetary gears can be found in the design of the two outer rings. The outer ring is also called the sun gear. The two gears mesh together according to their own axes. The outer ring is the planetary gear’s carrier. Its weight is proportional to the portion of the ring that is stationary. The carrier sets the gaps between the two gears.
Helical gears have angled teeth and are ideal for applications with high loads. They are also extremely durable and can transfer a high load. A typical Helical gearbox has two pairs of teeth, and this ensures smooth transmission. In addition, the increased contact ratio leads to lower fluctuations in mesh stiffness, which means more load capacity. In terms of price, Helical planetary gears are the most affordable gearbox type.
The outer ring gear drives the inner ring gear and surrounding planetary parts. A wheel drive planetary gearbox may have as much as 332,000 N.m. torque. Another common type of planetary gearbox is wheel drive. It is similar to a hub, but the outer ring gear drives the wheels and the sun gear. They are often combined over a housing to maximize size. One-stage Helical gears can be used in bicycles, while a two-stage planetary gear system can handle up to 113,000 N.m. torque.
The design of a helical planetary geartrain is complicated. It must comply with several constraints. These constraints relate to the geometrical relationship of the planetary geartrains. This study of the possible design space of a Helical geartrain uses geometric layouts. The ring gear, sun, and ring gear have no effect on the ratio of the planetary transmission. Nonetheless, helical geartrains are a good choice for many applications.
Spur gear planetary gearbox
The combination of planetary gears and spur gears in a transmission system is called a planetary or spur gearbox. Both the planetary gear and spur gear have their own characteristics and are used in various kinds of vehicles. They work in a similar way, but are built differently. Here are some important differences between the two types of gears. Listed below are some of the most important differences between them:
Helical gears: As opposed to spur gears, helical gears generate significant axial forces in the gear mesh. They also feature greater sliding contact at the point of tooth contact. The helix angle of a gearbox is generally in the range of 15 to 30 degrees. The higher the helix angle, the more axial forces will be transmitted. The axial force in a helical gearbox is greater than that of a spur gear, which is the reason why helical gears are more efficient.
As you can see, the planetary gearhead has many variations and applications. However, you should take care in selecting the number of teeth for your planetary gear system. A five:1 spur gear drive ratio, for example, means that the sun gear needs to complete five revolutions for every output carrier revolution. To achieve this, you’ll want to select a sun gear with 24 teeth, or five mm for each revolution. You’ll need to know the metric units of the planetary gearhead for it to be compatible with different types of machines.
Another important feature of a planetary gearbox is that it doesn’t require all of the spur gears to rotate around the axis of the drive shaft. Instead, the spur gears’ internal teeth are fixed and the drive shaft is in the same direction as the output shaft. If you choose a planetary gearbox with fixed internal teeth, you’ll need to make sure that it has enough lubrication.
The other significant difference between a spur gear and a planetary gearbox is the pitch. A planetary gearbox has a high pitch diameter, while a spur gear has low pitch. A spur gear is able to handle higher torques, but isn’t as efficient. In addition, its higher torque capability is a big drawback. Its efficiency is similar to that of a spur gear, but it is much less noisy.
Another difference between planetary and spur gear motors is their cost. Planetary gear motors tend to be more expensive than spur gear motors. But spur gears are cheaper to produce, as the gears themselves are smaller and simpler. However, planetary gear motors are more efficient and powerful. They can handle lower torque applications. But each gear carries a fixed load, limiting their torque. A spur gear motor also has fewer internal frictions, so it is often suited for lower torque applications.
Another difference between spur gears and planetary gears is their orientation. Single spur gears are not coaxial gearboxes, so they’re not coaxial. On the other hand, a planetary gearbox is coaxial, meaning its input shaft is also coaxial. In addition to this, a planetary gearbox is made of two sets of gear wheels with the same orientation. This gives it the ability to achieve concentricity.
Another difference between spur gears and planetary gears is that a planetary gear has an integer number of teeth. This is important because each gear must mesh with a sun gear or a ring gear. Moreover, each planet must have a corresponding number of teeth. For each planet to mesh with the sun, the teeth must have a certain distance apart from the other. The spacing between planets also matters.
Besides the size, the planetary gear system is also known as epicyclic gearing. A planetary gear system has a sun gear in the center, which serves as the input gear. This gear has at least three driven gears. These gears engage with each other from the inside and form an internal spur gear design. These gear sets are highly durable and able to change ratios. If desired, a planetary gear train can be converted to another ratio, thereby enhancing its efficiency.
Another important difference between a spur gear and a planetary gearbox is the type of teeth. A spur gear has teeth that are parallel to the shaft, while a planetary gear has teeth that are angled. This type of gear is most suitable for low-speed applications, where torque is necessary to move the actuation object. Spur gears also produce noise and can damage gear teeth due to repeated collisions. A spur gear can also slip, preventing torque from reaching the actuation object.
editor by CX 2023-06-02
China Sgr Brand Inline Straight Planetary Gear Speed Reducer, Gearmotor, Gearboxes Coupled with ABB Hydraulic Motor efficiency of planetary gearbox
Error:获取session失败,
Application: | Motor, Machinery |
---|---|
Function: | Distribution Power, Change Drive Torque, Speed Reduction |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Single-Step |
Samples: |
US$ 200/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How to Select a Planetary Gearbox for Your Applications
You can select the most suitable Planetary Gearbox for your applications after carefully checking the various features. You should also consider secondary features like noise level, corrosion resistance, construction, price, delivery time and service. You should also check if the constructor is available across the world, because some constructors operate faster than others. Some constructors even respond to your requests on the same day, while others deliver each planetary gearbox even if they are out of stock.
CZPT gearbox
An CZPT planetary gearbox is a high-quality, compact, and lightweight gearbox that distributes loads over several gears. The planetary gearbox has a polymer case that ensures quiet operation. The company is committed to the circular economy, investing in chemical recycling and promoting the use of recycled materials wherever possible. For more information, visit CZPT’s website or contact an CZPT expert today.
A planetary gearbox contains a sun gear, which is known as the input gear. The other gears are called planets, and these are mounted on a carrier, which is connected to an output shaft. A planetary gearbox is characterized by its high reduction ratios, energy savings, and compact design. It offers superior durability and trouble-free service. Whether you need a large or small planetary gearbox, you can find one to suit your needs.
The Standard series planetary gearboxes are a cost-effective alternative to premium series gearboxes. These gearboxes are suitable for applications requiring only mild backlash or with low IP65 protection. ABB positioners feature seven different gear unit variants, allowing for standardized mounting and stranded wire connections. The drygear(r) strain wave gear has a stranded wire connector and is available with a three-year warranty.
A planetary gearbox can be used for various applications, from lifting goods to loading and unloading products in a factory. The company has a wide product range for different applications, including plastic machinery and machine tools, pick-and-place robots, mill drives, and wind turbines. It can also be used to operate robot gripper systems. Its high-quality planetary gears are designed to last for many years, making it an ideal solution for many industries.
CZPT
A planetary gearbox is an essential component of many transport systems. These devices work by aligning the output and input shafts. The Reggiana planetary gearbox 2000 series includes bevel stages and linear variants. The company offers modularity and flexibility with output configurations in ten different gear sizes. Each planetary gearbox can also be customized to meet the specific needs of a specific application.
CZPT is the Australian branch of CZPT, a leading global manufacturer of planetary gearboxes. CZPT is located in Carrum Downs, south east of Melbourne, and is one of the leading suppliers of planetary reduction gears, hydraulic failsafe brakes, and wheel drives. The company aims to provide high-quality, durable products that can be used in a variety of applications.
A CZPT Plus Series Gear is designed to maximize flexibility in a variety of applications. The gearbox’s modular design allows for endless scalability. The CZPT Plus Series Gear is commonly used in mining operations, and is known for its raw output capabilities and low maintenance design. It is made with high-quality materials, and it is also available in multiple sizes for customized applications.
The multi-stage planetary gearbox can combine individual ratios to increase the overall multiplicative factor. The planetary gears may also be combined to increase the transmittable torque. The output shaft and drive shaft may rotate in opposite directions, or they can be fixed so the gearbox can function in either direction. If the ring gear is fixed, planetary gearboxes can be realized as multi-stage.
CZPT
The CZPT Planetary Gearbox is the perfect combination of compact size and high efficiency in power transmission. The compact design allows this gearbox to run silently while still delivering high power density and transmission efficiency. The CZPT Planetary Gearbox has several advantages. Unlike conventional planetary gearboxes, CZPT’s planetary gearbox features high power density, low torque, and optimum transmission efficiency.
CZPT’s products have been used in a variety of applications for many years, proving their reliability and quality. These products are renowned in the world for their reliability and quality. CZPT’s planetary gearboxes are backed by a five-year warranty. These features help customers choose a planetary gearbox that meets their needs and stays in top shape for years to come. But how do you test a planetary gearbox?
Figure 17 shows the response of a planetary gearbox to vibration. The maximum displacement in xg direction at a 50% crack level is shown by the dashed line. The signal in xg direction is called the xsignal. Moreover, the CZPT Planetary Gearbox’s vibration response is highly sensitive to the location of the bearings. For this reason, dynamic modeling of a planetary gearbox should consider bearing clearance.
CZPT’s hollow cup motor drive system features high reliability and low power consumption. The gearbox is compatible with industries with high quality standards, as there is no cogging torque. Its compact size and low electromagnetic noise make it ideal for a variety of applications. For industries with high product quality requirements, the CZPT Hollow Cup Motor Drive System is an excellent choice. It is also designed for vertical installation. You can even buy multiple CZPT products to meet your specific needs.
CZPT
With its PL series planetary gearboxes, CZPT has expanded its product portfolio to include more types of drive solutions. CZPT is one of the few companies to have won the Schneider Electric Supplier Award for Quality. In addition, its high-quality planetary gearboxes are highly customizable, allowing designers to customize each gearbox for the application at hand. Whether it is a geared pump or a stepper motor, CZPT’s PLE planetary gearboxes are built to meet the exact specifications of the application at hand.
The flange-mounted version of the planetary gearbox is comparable to its planetary counterpart. Using a flange-mounted planetary gearbox allows for a smaller, more compact design. This model also features a large-diameter output shaft, which helps achieve a higher level of torsional stiffness. This makes CZPT flange gearboxes particularly useful for applications where the direction of motion can change frequently. These gearboxes can be used with a wide variety of belts.
The PLQE 60-mm gearbox is used in Outrider’s single-stage design. Its gear ratio is 5:1, while its dual-stage version has a 15:1 gear ratio. Both gearboxes have identical mounting configurations, but the two-stage version is slightly longer.
The PLN series of planetary gearheads from CZPT are the standard for high-precision applications. They’re compatible with all major motor brands and sizes, and the company’s adapter kits are available to fit almost any motor. This makes CZPT gearheads one of the easiest to integrate into a complex machine. They’re also extremely easy to install, with the same torque as their corresponding spur gears.
CZPT’s
If you are looking for an efficient solution for screw press applications, consider using CZPT’s 300M Planetary Gearbox. It has high axial and radial load capacities, compact design, high torque output, and torque arm. The 300M planetary gearbox is compatible with a variety of screw presses, including hydraulic press systems and digester systems. Its Torque control and direct coupling feature makes it easy to install.
CZPT’s small planetary gearboxes have an output torque of 20:1 from individual ratios of 5:1 and 4:1. They run silently and deliver maximum transmission efficiency. The planetary gears are mounted on a ring that is fixed around the center sun gear. The ring acts as an output torque converter for the next planet stage. This planetary gearbox has multiple stages and a maximum ratio of 20:1 can be created from individual ratios of 5:1 and 4:1.
CZPT Motor is an innovator in the design and manufacture of miniature motors for industrial robots. Its offerings include brushless DC and brushed DC motors, as well as planetary gearboxes, encoders, and brakes. CZPT’s products have a variety of uses in robotics, intelligent appliances, medical equipment, communication, and industrial automation. The company is also committed to providing custom designs based on customer specifications.
Another advantage of a planetary gearbox is its high power transmission efficiency. It is capable of approximately 3% per stage, allowing it to transmit more torque than a conventional single-stage gearbox. Planetary gearboxes are also compact and have a high torque-to-weight ratio. CZPT’s Planetary Gearbox is the best choice for many applications. This gearbox offers the highest efficiency and is ideal for small-scale production.
editor by CX 2023-04-11
China High Torque Low Backlash Transmission NEMA42 Motor Planetary Gearboxes (PRN120-L2) bevel planetary gearbox
Solution Description
Substantial Torque Low Backlash Transmission Nema42 Motor Planetary Gearboxes (PRN120-L2)
The large-precision planetary gearbox adopts spur gear design and style, and is utilised in numerous manage transmission fields with servo motors, this kind of as precision machine equipment, laser slicing equipment, battery processing products, and so forth. It has the positive aspects of large torsional rigidity and massive output torque.
Product Description
1.Output threaded link, normal set up,universal utilization.
two.Single cantilever structure.basic design and style,economic cost
3.Functioning steady. Reduced noise.
four.Spherical flange output,threaded reverse connection,standardized dimension.
5.Keyway can be opened in the power shaft.
6.The output relationship technical specs are comprehensive and there are a lot of alternatives
7.Backlash 8-sixteen arcmin. Can suit most situation.
Item Parameters
Specifications | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |||
Technal Parameters | ||||||||
Max. Torque | Nm | 1.5times rated torque | ||||||
Emergency Cease Torque | Nm | 2.5times rated torque | ||||||
Max. Radial Load | N | 240 | four hundred | 450 | 1240 | 2250 | ||
Max. Axial Load | N | 220 | 420 | 430 | one thousand | 1500 | ||
Torsional Rigidity | Nm/arcmin | one.eight | 4.7 | four.eighty five | 11 | 35 | ||
Max.Enter Velocity | rpm | 8000 | 6000 | 6000 | 6000 | 4000 | ||
Rated Enter Speed | rpm | 4000 | 3500 | 3500 | 3500 | 3000 | ||
Noise | dB | ≤58 | ≤60 | ≤60 | ≤65 | ≤70 | ||
Average Lifestyle Time | h | 20000 | ||||||
Efficiency Of Entire Load | % | L1≥96% L2≥94% | ||||||
Return Backlash | P1 | L1 | arcmin | ≤8 | ≤8 | ≤8 | ≤8 | ≤8 |
L2 | arcmin | ≤12 | ≤12 | ≤12 | ≤12 | ≤12 | ||
P2 | L1 | arcmin | ≤16 | ≤16 | ≤16 | ≤16 | ≤16 | |
L2 | arcmin | ≤20 | ≤20 | ≤20 | ≤20 | ≤20 | ||
Minute Of Inertia Table | L1 | 3 | Kg*cm2 | .46 | .seventy seven | 1.73 | 12.78 | 36.72 |
4 | Kg*cm2 | .forty six | .77 | 1.seventy three | twelve.78 | 36.72 | ||
5 | Kg*cm2 | .46 | .seventy seven | 1.73 | 12.seventy eight | 36.72 | ||
7 | Kg*cm2 | .forty one | .65 | one.42 | 11.38 | 34.02 | ||
ten | Kg*cm2 | .forty one | .sixty five | one.forty two | 11.38 | 34.02 | ||
L2 | twelve | Kg*cm2 | .forty four | .72 | 1.49 | twelve.18 | 34.24 | |
15 | Kg*cm2 | .44 | .72 | 1.forty nine | twelve.eighteen | 34.24 | ||
16 | Kg*cm2 | .seventy two | .seventy two | one.forty nine | 12.18 | 34.24 | ||
twenty | Kg*cm2 | .44 | .72 | one.forty nine | twelve.eighteen | 34.24 | ||
25 | Kg*cm2 | .forty four | .seventy two | 1.forty nine | twelve.eighteen | 34.24 | ||
28 | Kg*cm2 | .forty four | .72 | one.49 | twelve.18 | 34.24 | ||
30 | Kg*cm2 | .44 | .72 | 1.forty nine | twelve.18 | 34.24 | ||
35 | Kg*cm2 | .44 | .seventy two | one.49 | 12.eighteen | 34.24 | ||
forty | Kg*cm2 | .44 | .72 | 1.49 | twelve.eighteen | 34.24 | ||
fifty | Kg*cm2 | .34 | .58 | one.25 | 11.forty eight | 34.02 | ||
70 | Kg*cm2 | .34 | .fifty eight | 1.twenty five | 11.forty eight | 34.02 | ||
a hundred | Kg*cm2 | .34 | .fifty eight | 1.25 | eleven.forty eight | 34.02 | ||
Technical Parameter | Stage | Ratio | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |
Rated Torque | L1 | three | Nm | 27 | 50 | ninety six | 161 | 364 |
4 | Nm | 40 | ninety | 122 | 210 | 423 | ||
five | Nm | forty | ninety | 122 | 210 | 423 | ||
seven | Nm | 34 | forty eight | ninety five | a hundred and seventy | 358 | ||
10 | Nm | sixteen | 22 | 56 | 86 | 210 | ||
L2 | 12 | Nm | 27 | 50 | ninety six | 161 | 364 | |
15 | Nm | 27 | fifty | ninety six | 161 | 364 | ||
16 | Nm | 40 | 90 | 122 | 210 | 423 | ||
twenty | Nm | 40 | ninety | 122 | 210 | 423 | ||
25 | Nm | 40 | 90 | 122 | 210 | 423 | ||
28 | Nm | forty | ninety | 122 | 210 | 423 | ||
30 | Nm | 27 | 50 | 96 | 161 | 364 | ||
35 | Nm | forty | 90 | 122 | 210 | 423 | ||
forty | Nm | 40 | ninety | 122 | 210 | 423 | ||
50 | Nm | 40 | ninety | 122 | 210 | 423 | ||
70 | Nm | 34 | 48 | 95 | one hundred seventy | 358 | ||
a hundred | Nm | 16 | 22 | 56 | 86 | 210 | ||
Degree Of Protection | IP65 | |||||||
Operation Temprature | ºC | – 10ºC to -90ºC | ||||||
Weight | L1 | kg | .ninety five | two.27 | three.06 | six.93 | fifteen.5 | |
L2 | kg | one.2 | 2.eight | 3.86 | eight.ninety eight | 17 |
Organization Profile
Packaging & Shipping
1. Lead time: 10-fifteen days as typical, thirty days in occupied time, it will be dependent on the thorough purchase amount
two. Shipping: DHL/ TNT/ UPS/ EMS/ FEDEX
FAQ
one. who are we?
Hefa Team is primarily based in ZheJiang , China, start from 1998,has a 3 subsidiaries in whole.The Major Merchandise is planetary gearbox,timing belt pulley, helical equipment,spur gear,gear rack,equipment ring,chain wheel,hollow rotating system,module,etc
two. how can we guarantee high quality?
Constantly a pre-production sample just before mass creation
Often closing Inspection ahead of shipment
3. how to choose the suitable planetary gearbox?
Very first of all,we require you to be CZPT to provide related parameters.If you have a motor drawing,it will permit us recommend a suited gearbox for you faster.If not,we hope you can offer the subsequent motor parameters:output velocity,output torque,voltage,existing,ip,sounds,operating problems,motor dimensions and electricity,and so forth
4. why ought to you purchase from us not from other suppliers?
We are a 22 years experiences maker on making the gears, specializing in producing all varieties of spur/bevel/helical gear, grinding equipment, equipment shaft, timing pulley, rack, planetary equipment reducer, timing belt and these kinds of transmission gear elements
five. what solutions can we give?
Approved Delivery Phrases: Fedex,DHL,UPS
Approved Payment Currency:USD,EUR,HKD,GBP,CNY
Accepted Payment Variety: T/T,L/C,PayPal,Western Union
Language Spoken:English,Chinese,Japanese
Application: | Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Manipulator Machinery |
---|---|
Function: | Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Vertical Type |
Step: | Double-Step |
###
Samples: |
US$ 202/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Specifications | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |||
Technal Parameters | ||||||||
Max. Torque | Nm | 1.5times rated torque | ||||||
Emergency Stop Torque | Nm | 2.5times rated torque | ||||||
Max. Radial Load | N | 240 | 400 | 450 | 1240 | 2250 | ||
Max. Axial Load | N | 220 | 420 | 430 | 1000 | 1500 | ||
Torsional Rigidity | Nm/arcmin | 1.8 | 4.7 | 4.85 | 11 | 35 | ||
Max.Input Speed | rpm | 8000 | 6000 | 6000 | 6000 | 4000 | ||
Rated Input Speed | rpm | 4000 | 3500 | 3500 | 3500 | 3000 | ||
Noise | dB | ≤58 | ≤60 | ≤60 | ≤65 | ≤70 | ||
Average Life Time | h | 20000 | ||||||
Efficiency Of Full Load | % | L1≥96% L2≥94% | ||||||
Return Backlash | P1 | L1 | arcmin | ≤8 | ≤8 | ≤8 | ≤8 | ≤8 |
L2 | arcmin | ≤12 | ≤12 | ≤12 | ≤12 | ≤12 | ||
P2 | L1 | arcmin | ≤16 | ≤16 | ≤16 | ≤16 | ≤16 | |
L2 | arcmin | ≤20 | ≤20 | ≤20 | ≤20 | ≤20 | ||
Moment Of Inertia Table | L1 | 3 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 |
4 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 | ||
5 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 | ||
7 | Kg*cm2 | 0.41 | 0.65 | 1.42 | 11.38 | 34.02 | ||
10 | Kg*cm2 | 0.41 | 0.65 | 1.42 | 11.38 | 34.02 | ||
L2 | 12 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | |
15 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
16 | Kg*cm2 | 0.72 | 0.72 | 1.49 | 12.18 | 34.24 | ||
20 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
25 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
28 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
30 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
35 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
40 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
50 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
70 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
100 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
Technical Parameter | Level | Ratio | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |
Rated Torque | L1 | 3 | Nm | 27 | 50 | 96 | 161 | 364 |
4 | Nm | 40 | 90 | 122 | 210 | 423 | ||
5 | Nm | 40 | 90 | 122 | 210 | 423 | ||
7 | Nm | 34 | 48 | 95 | 170 | 358 | ||
10 | Nm | 16 | 22 | 56 | 86 | 210 | ||
L2 | 12 | Nm | 27 | 50 | 96 | 161 | 364 | |
15 | Nm | 27 | 50 | 96 | 161 | 364 | ||
16 | Nm | 40 | 90 | 122 | 210 | 423 | ||
20 | Nm | 40 | 90 | 122 | 210 | 423 | ||
25 | Nm | 40 | 90 | 122 | 210 | 423 | ||
28 | Nm | 40 | 90 | 122 | 210 | 423 | ||
30 | Nm | 27 | 50 | 96 | 161 | 364 | ||
35 | Nm | 40 | 90 | 122 | 210 | 423 | ||
40 | Nm | 40 | 90 | 122 | 210 | 423 | ||
50 | Nm | 40 | 90 | 122 | 210 | 423 | ||
70 | Nm | 34 | 48 | 95 | 170 | 358 | ||
100 | Nm | 16 | 22 | 56 | 86 | 210 | ||
Degree Of Protection | IP65 | |||||||
Operation Temprature | ºC | – 10ºC to -90ºC | ||||||
Weight | L1 | kg | 0.95 | 2.27 | 3.06 | 6.93 | 15.5 | |
L2 | kg | 1.2 | 2.8 | 3.86 | 8.98 | 17 |
Application: | Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Manipulator Machinery |
---|---|
Function: | Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction |
Layout: | Coaxial |
Hardness: | Hardened Tooth Surface |
Installation: | Vertical Type |
Step: | Double-Step |
###
Samples: |
US$ 202/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
Specifications | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |||
Technal Parameters | ||||||||
Max. Torque | Nm | 1.5times rated torque | ||||||
Emergency Stop Torque | Nm | 2.5times rated torque | ||||||
Max. Radial Load | N | 240 | 400 | 450 | 1240 | 2250 | ||
Max. Axial Load | N | 220 | 420 | 430 | 1000 | 1500 | ||
Torsional Rigidity | Nm/arcmin | 1.8 | 4.7 | 4.85 | 11 | 35 | ||
Max.Input Speed | rpm | 8000 | 6000 | 6000 | 6000 | 4000 | ||
Rated Input Speed | rpm | 4000 | 3500 | 3500 | 3500 | 3000 | ||
Noise | dB | ≤58 | ≤60 | ≤60 | ≤65 | ≤70 | ||
Average Life Time | h | 20000 | ||||||
Efficiency Of Full Load | % | L1≥96% L2≥94% | ||||||
Return Backlash | P1 | L1 | arcmin | ≤8 | ≤8 | ≤8 | ≤8 | ≤8 |
L2 | arcmin | ≤12 | ≤12 | ≤12 | ≤12 | ≤12 | ||
P2 | L1 | arcmin | ≤16 | ≤16 | ≤16 | ≤16 | ≤16 | |
L2 | arcmin | ≤20 | ≤20 | ≤20 | ≤20 | ≤20 | ||
Moment Of Inertia Table | L1 | 3 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 |
4 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 | ||
5 | Kg*cm2 | 0.46 | 0.77 | 1.73 | 12.78 | 36.72 | ||
7 | Kg*cm2 | 0.41 | 0.65 | 1.42 | 11.38 | 34.02 | ||
10 | Kg*cm2 | 0.41 | 0.65 | 1.42 | 11.38 | 34.02 | ||
L2 | 12 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | |
15 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
16 | Kg*cm2 | 0.72 | 0.72 | 1.49 | 12.18 | 34.24 | ||
20 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
25 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
28 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
30 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
35 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
40 | Kg*cm2 | 0.44 | 0.72 | 1.49 | 12.18 | 34.24 | ||
50 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
70 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
100 | Kg*cm2 | 0.34 | 0.58 | 1.25 | 11.48 | 34.02 | ||
Technical Parameter | Level | Ratio | PRN60 | PRN80 | PRN90 | PRN120 | PRN160 | |
Rated Torque | L1 | 3 | Nm | 27 | 50 | 96 | 161 | 364 |
4 | Nm | 40 | 90 | 122 | 210 | 423 | ||
5 | Nm | 40 | 90 | 122 | 210 | 423 | ||
7 | Nm | 34 | 48 | 95 | 170 | 358 | ||
10 | Nm | 16 | 22 | 56 | 86 | 210 | ||
L2 | 12 | Nm | 27 | 50 | 96 | 161 | 364 | |
15 | Nm | 27 | 50 | 96 | 161 | 364 | ||
16 | Nm | 40 | 90 | 122 | 210 | 423 | ||
20 | Nm | 40 | 90 | 122 | 210 | 423 | ||
25 | Nm | 40 | 90 | 122 | 210 | 423 | ||
28 | Nm | 40 | 90 | 122 | 210 | 423 | ||
30 | Nm | 27 | 50 | 96 | 161 | 364 | ||
35 | Nm | 40 | 90 | 122 | 210 | 423 | ||
40 | Nm | 40 | 90 | 122 | 210 | 423 | ||
50 | Nm | 40 | 90 | 122 | 210 | 423 | ||
70 | Nm | 34 | 48 | 95 | 170 | 358 | ||
100 | Nm | 16 | 22 | 56 | 86 | 210 | ||
Degree Of Protection | IP65 | |||||||
Operation Temprature | ºC | – 10ºC to -90ºC | ||||||
Weight | L1 | kg | 0.95 | 2.27 | 3.06 | 6.93 | 15.5 | |
L2 | kg | 1.2 | 2.8 | 3.86 | 8.98 | 17 |
Planetary Gearbox Advantages and Disadvantages
A planetary gearbox is a type of mechanical drive with a single output shaft. They are suitable for both clockwise and counterclockwise rotations, have less inertia, and operate at higher speeds. Here are some advantages and disadvantages of this type of gearbox. Let us see what these advantages are and why you should use them in your applications. Listed below are some of the benefits of planetary gearboxes.
Suitable for counterclockwise and clockwise rotation
If you want to teach children about the clock hands, you can buy some resources for counterclockwise and asymmetrical rotation. These resources include worksheets for identifying degrees of rotation, writing rules for rotation, and visual processing. You can also use these resources to teach angles. For example, the translation of shapes activity pack helps children learn about the rotation of geometric shapes. Similarly, the visual perception activity sheet helps children understand how to process information visually.
Various studies have been done to understand the anatomical substrate of rotations. In a recent study, CZPT et al. compared the position of the transitional zone electrocardiographically and anatomically. The authors found that the transitional zone was normal in nine of 33 subjects, indicating that rotation is not a sign of disease. Similarly, a counterclockwise rotation may be caused by a genetic or environmental factor.
The core tip data should be designed to work in both clockwise and counterclockwise rotation. Counterclockwise rotation requires a different starting point than a clockwise rotation. In North America, star-delta starting is used. In both cases, the figure is rotated about its point. Counterclockwise rotation, on the other hand, is done in the opposite direction. In addition, it is possible to create counterclockwise rotation using the same gimbal.
Despite its name, both clockwise and counterclockwise rotation requires a certain amount of force to rotate. When rotating clockwise, the object faces upwards. Counterclockwise rotation, on the other hand, starts from the top position and heads to the right. If rotating in the opposite direction, the object turns counterclockwise, and vice versa. The clockwise movement, in contrast, is the reverse of counterclockwise rotation.
Has less inertia
The primary difference between a planetary gearbox and a normal pinion-and-gear reducer is the ratio. A planetary gearbox will produce less inertia, which is an important advantage because it will reduce torque and energy requirements. The ratio of the planetary gearbox to its fixed axis counterpart is a factor of three. A planetary gearbox has smaller gears than a conventional planetary, so its inertia is proportional to the number of planets.
Planetary gears are less inertia than spur gears, and they share the load across multiple gear teeth. This means that they will have low backlash, and this is essential for applications with high start-stop cycles and frequent rotational direction changes. Another benefit is the high stiffness. A planetary gearbox will have less backlash than a spur gearbox, which means that it will be more reliable.
A planetary gearbox can use either spur or helical gears. The former provides higher torque ratings while the latter has less noise and stiffness. Both types of gears are useful in motorsports, aerospace, truck transmissions, and power generation units. They require more assembly time than a conventional parallel shaft gear, but the PD series is the more efficient alternative. PD series planetary gears are suitable for many applications, including servo and robotics.
In contrast, a planetary gear set can have varying input speed. This can affect the frequency response of the gearset. A mathematical model of the two-stage planetary gears has non-stationary effects and correlates with experimental findings. Fig. 6.3 shows an addendum. The dedendum’s minimum value is approximately 1.25m. When the dedendum is at its smallest, the dedendum has less inertia.
Offers greater reliability
The Planetary Gearbox is a better option for driving a vehicle than a standard spur gearbox. A planetary gearbox is less expensive, and they have better backlash, higher load capacity, and greater shock loads. Unlike spur gearboxes, however, mechanical noise is virtually nonexistent. This makes them more reliable in high-shock situations, as well as in a wide range of applications.
The Economy Series has the same power density and torque capacity of the Precision Helical Series, but it lacks the precision of the latter. In contrast, Economy Series planetary gearboxes feature straight spur planetary gearing, and they are used in applications requiring high torque. Both types of gearboxes are compatible with NEMA servo motors. If torque density is important, a planetary gearbox is the best choice.
The Dispersion of External Load: The SSI model has been extensively used to model the reliability of planetary gear systems. This model takes the contact force and fatigue strength of the system as generalized stress and strength. It also provides a theoretical framework to evaluate the reliability of planetary gear systems. It also has many other advantages that make it the preferred choice for high-stress applications. The Planetary Gearbox offers greater reliability and efficiency than traditional rack and pinion gear systems.
Planetary gearing has greater reliability and compact design. Its compact design allows for wider applications with concerns about space and weight. Additionally, the increased torque and reduction makes planetary gearboxes an excellent choice for a wide variety of applications. There are three major types of planetary gearboxes, each with its own advantages. This article describes a few of them. Once you understand their workings, you will be able to choose the best planetary gearbox for your needs.
Has higher operating speeds
When you look at planetary gearboxes, you might be confused about which one to choose. The primary issue is the application of the gearbox. You must also decide on secondary factors like noise level, corrosion resistance, construction, price, and availability worldwide. Some constructors work faster than others and deliver the gearboxes on the same day. However, the latter ones often deliver the planetary gearbox out of stock.
Compared to conventional gearboxes, a planetary gearbox can run at higher speeds when the input speed fluctuates. However, these gears are not very efficient in high-speed applications because of their increased noise levels. This makes planetary gears unsuitable for applications involving a great deal of noise. That is why most planetary gears are used in small-scale applications. There are some exceptions, but in general, a planetary gearbox is better suited for applications with higher operating speeds.
The basic planetary gearbox is a compact alternative to normal pinion-and-gear reducers. They can be used in a wide variety of applications where space and weight are concerns. Its efficiency is also higher, delivering 97% of the power input. It comes in three different types based on the performance. A planetary gearbox can also be classified as a worm gear, a spur gear, or a sprocket.
A planetary gearhead has a high-precision design and can generate substantial torque for their size. It also reduces backlash to two arc-min. Additionally, it is lubricated for life, which means no maintenance is needed. It can fit into a small machine envelope and has a small footprint. Moreover, the helical crowned gearing provides fast positioning. A sealed gearbox prevents abrasive dust from getting into the planetary gearhead.
Has drawbacks
The design of a planetary gearbox is compact and enables high torque and load capability in a small space. This gear arrangement also reduces the possibility of wear and tear. Planet gears are arranged in a planetary fashion, allowing gears to shift under load and a uniform distribution of torque. However, some disadvantages of planetary gears must be considered before investing in this gearbox.
While the planetary gearbox is a high precision motion-control device, its design and maintenance requirements are a concern. The bearing load is high, requiring frequent lubrication. Also, they are inaccessible. Despite these drawbacks, planetary gearboxes are suitable for a variety of tasks. They also have low backlash and high torsional stiffness, making them excellent choices for many applications.
As a result, the speed of a planetary gearbox varies with load and speed. At lower ratios, the sun gear becomes too large in relation to the planet gears. As the ratio increases, the sun gear will become too low, reducing torque. The planetary gears also reduce their torque in high-speed environments. Consequently, the ratio is a crucial consideration for planetary gearbox condition monitoring.
Excess drag may result from out-of-tolerance components or excessive lubrication. Drag should be measured both in directions and be within acceptable ranges. Grease and oil lubrication are two common planetary gearbox lubricants, but the choice is largely dependent on your application. While grease lubricates planetary gears well, oil needs maintenance and re-lubrication every few thousand hours.
editor by czh 2023-01-19